TY - JOUR A1 - Vicedo, Vicent A1 - Caus, Esmeralda A1 - Frijia, Gianluca T1 - Late Cretaceous alveolinaceans (larger foraminifera) of the Caribbean palaeobioprovince and their stratigraphic distribution JF - Journal of systematic palaeontology N2 - Architectural analysis of the Late Cretaceous alveolinaceans of the Caribbean palaeobioprovince has made it possible to separate four genera: Praechubbina, Chubbinella gen. nov., Chubbina and Caribalveolina. The first three genera belong to the family Rhapydioninidae, while the fourth is placed in the family Alveolinidae. Two species, Praechubbina breviclaustra and P. oxchucensis sp. nov., represent the primitive genus Praechubbina, while the species cardenasensis and obesa, previously ascribed to this genus, must be reassigned respectively to Chubbinella gen. nov. and Caribalveolina. The species Chubbina jamaicensis, C. macgillavryi and C. fourcadei sp. nov. complete the inventory of Chubbina. The alveolinid genus Caribalveolina comprises two species, C. obesa and C. michaudi. Caribbean alveolinaceans include two successive assemblages. The lower assemblage is characterized by Praechubbina oxchucensis, P. brevisclaustra, Chubbinella cardenasensis and Caribalveolina obesa. The upper assemblage is represented by the genus Chubbina, with C. fourcadei, C. jamaicensis and C. macgillavryi, and Caribalveolina michaudi. The age of the lower assemblage is uncertain (probably Late CampanianEarly Maastrichtian), while the upper assemblage has been dated by strontium isotope stratigraphy as Late Maastrichtian. KW - alveolinaceans KW - larger foraminifera KW - shell-architecture KW - Caribbean KW - biostratigraphy KW - Sr-isotope stratigraphy Y1 - 2013 U6 - https://doi.org/10.1080/14772019.2011.637517 SN - 1477-2019 VL - 11 IS - 1 SP - 1 EP - 25 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Schildgen, Taylor F. A1 - Cosentino, D. A1 - Bookhagen, Bodo A1 - Niedermann, Samuel A1 - Yildirim, C. A1 - Echtler, Helmut Peter A1 - Wittmann, Hella A1 - Strecker, Manfred T1 - Multi-phased uplift of the southern margin of the Central Anatolian plateau, Turkey a record of tectonic and upper mantle processes JF - Earth & planetary science letters N2 - Uplifted Neogene marine sediments and Quaternary fluvial terraces in the Mut Basin, southern Turkey, reveal a detailed history of surface uplift along the southern margin of the Central Anatolian plateau from the Late Miocene to the present. New surface exposure ages (Be-10, Al-26, and Ne-21) of gravels capping fluvial strath terraces located between 28 and 135 m above the Goksu River in the Mut Basin yield ages ranging from ca. 25 to 130 ka, corresponding to an average incision rate of 0.52 to 0.67 mm/yr. Published biostratigraphic data combined with new interpretations of the fossil assemblages from uplifted marine sediments reveal average uplift rates of 0.25 to 0.37 mm/yr since Late Miocene time (starting between 8 and 5.45 Ma), and 0.72 to 0.74 mm/yr after 1.66 to 1.62 Ma. Together with the terrace abandonment ages, the data imply 0.6 to 0.7 mm/yr uplift rates from 1.6 Ma to the present. The different post-Late Miocene and post-1.6 Ma uplift rates can imply increasing uplift rates through time, or multi-phased uplift with slow uplift or subsidence in between. Longitudinal profiles of rivers in the upper catchment of the Mut and Ermenek basins show no apparent lithologic or fault control on some knickpoints that occur at 1.2 to 1.5 km elevation, implying a transient response to a change in uplift rates. Projections of graded upper relict channel segments to the modern outlet, together with constraints from uplifted marine sediments, show that a slower incision/uplift rate of 0.1 to 0.2 mm/yr preceded the 0.7 mm/yr uplift rate. The river morphology and profile projections therefore reflect multi-phased uplift of the plateau margin, rather than steadily increasing uplift rates. Multi-phased uplift can be explained by lithospheric slab break-off and possibly also the arrival of the Eratosthenes Seamount at the collision zone south of Cyprus. KW - Central Anatolian plateau KW - uplift KW - fluvial strath terraces KW - cosmogenic nuclides KW - biostratigraphy KW - channel projection Y1 - 2012 U6 - https://doi.org/10.1016/j.epsl.2011.12.003 SN - 0012-821X VL - 317 SP - 85 EP - 95 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kaya, Mustafa Yücel A1 - Dupont-Nivet, Guillaume A1 - Proust, Jean‐Noël A1 - Roperch, Pierrick A1 - Bougeois, Laurie A1 - Meijer, Niels A1 - Frieling, Joost A1 - Fioroni, Chiara A1 - Altiner, Sevinç Özkan A1 - Vardar, Ezgi A1 - Barbolini, Natasha A1 - Stoica, Marius A1 - Aminov, Jovid A1 - Mamtimin, Mehmut A1 - Zhaojie, Guo T1 - Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins) BT - Role of intensified tectonic activity at ca. 41 Ma JF - Basin research N2 - The proto-Paratethys Sea covered a vast area extending from the Mediterranean Tethys to the Tarim Basin in western China during Cretaceous and early Paleogene. Climate modelling and proxy studies suggest that Asian aridification has been governed by westerly moisture modulated by fluctuations of the proto-Paratethys Sea. Transgressive and regressive episodes of the proto-Paratethys Sea have been previously recognized but their timing, extent and depositional environments remain poorly constrained. This hampers understanding of their driving mechanisms (tectonic and/or eustatic) and their contribution to Asian aridification. Here, we present a new chronostratigraphic framework based on biostratigraphy and magnetostratigraphy as well as a detailed palaeoenvironmental analysis for the Paleogene proto-Paratethys Sea incursions in the Tajik and Tarim basins. This enables us to identify the major drivers of marine fluctuations and their potential consequences on Asian aridification. A major regional restriction event, marked by the exceptionally thick (<= 400 m) shelf evaporites is assigned a Danian-Selandian age (ca. 63-59 Ma) in the Aertashi Formation. This is followed by the largest recorded proto-Paratethys Sea incursion with a transgression estimated as early Thanetian (ca. 59-57 Ma) and a regression within the Ypresian (ca. 53-52 Ma), both within the Qimugen Formation. The transgression of the next incursion in the Kalatar and Wulagen formations is now constrained as early Lutetian (ca. 47-46 Ma), whereas its regression in the Bashibulake Formation is constrained as late Lutetian (ca. 41 Ma) and is associated with a drastic increase in both tectonic subsidence and basin infilling. The age of the final and least pronounced sea incursion restricted to the westernmost margin of the Tarim Basin is assigned as Bartonian-Priabonian (ca. 39.7-36.7 Ma). We interpret the long-term westward retreat of the proto-Paratethys Sea starting at ca. 41 Ma to be associated with far-field tectonic effects of the Indo-Asia collision and Pamir/Tibetan plateau uplift. Short-term eustatic sea level transgressions are superimposed on this long-term regression and seem coeval with the transgression events in the other northern Peri-Tethyan sedimentary provinces for the 1st and 2nd sea incursions. However, the 3rd sea incursion is interpreted as related to tectonism. The transgressive and regressive intervals of the proto-Paratethys Sea correlate well with the reported humid and arid phases, respectively in the Qaidam and Xining basins, thus demonstrating the role of the proto-Paratethys Sea as an important moisture source for the Asian interior and its regression as a contributor to Asian aridification. KW - aridification KW - Asia KW - biostratigraphy KW - climate KW - magnetostratigraphy KW - microfossil KW - Paleogene KW - Pamir KW - proto-Paratethys KW - regression KW - Tajik Basin KW - Tarim Basin KW - tectonism KW - westerlies Y1 - 2018 U6 - https://doi.org/10.1111/bre.12330 SN - 0950-091X SN - 1365-2117 VL - 31 IS - 3 SP - 461 EP - 486 PB - Wiley CY - Hoboken ER -