TY - JOUR A1 - Wenz, Leonie A1 - Levermann, Anders A1 - Auffhammer, Maximilian T1 - North-south polarization of European electricity consumption under future warming JF - Proceedings of the National Academy of Sciences of the United States of America N2 - There is growing empirical evidence that anthropogenic climate change will substantially affect the electric sector. Impacts will stem both from the supply sidethrough the mitigation of greenhouse gasesand from the demand sidethrough adaptive responses to a changing environment. Here we provide evidence of a polarization of both peak load and overall electricity consumption under future warming for the worlds third-largest electricity marketthe 35 countries of Europe. We statistically estimate country-level doseresponse functions between daily peak/total electricity load and ambient temperature for the period 2006-2012. After removing the impact of nontemperature confounders and normalizing the residual load data for each country, we estimate a common doseresponse function, which we use to compute national electricity loads for temperatures that lie outside each countrys currently observed temperature range. To this end, we impose end-of-century climate on todays European economies following three different greenhouse-gas concentration trajectories, ranging from ambitious climate-change mitigationin line with the Paris agreementto unabated climate change. We find significant increases in average daily peak load and overall electricity consumption in southern and western Europe (similar to 3 to similar to 7% for Portugal and Spain) and significant decreases in northern Europe (similar to-6 to similar to-2% for Sweden and Norway). While the projected effect on European total consumption is nearly zero, the significant polarization and seasonal shifts in peak demand and consumption have important ramifications for the location of costly peak-generating capacity, transmission infrastructure, and the design of energy-efficiency policy and storage capacity. KW - electricity consumption KW - peak load KW - climate change KW - adaptation Y1 - 2017 U6 - https://doi.org/10.1073/pnas.1704339114 SN - 0027-8424 VL - 114 SP - E7910 EP - E7918 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Schwensow, Nina I. A1 - Detering, Harald A1 - Pederson, Stephen A1 - Mazzoni, Camila A1 - Sinclair, Ron A1 - Peacock, David A1 - Kovaliski, John A1 - Cooke, Brian A1 - Fickel, Jörns A1 - Sommer, Simone T1 - Resistance to RHD virus in wild Australian rabbits BT - comparison of susceptible and resistant individuals using a genomewide approach JF - Molecular ecology N2 - Deciphering the genes involved in disease resistance is essential if we are to understand host-pathogen coevolutionary processes. The rabbit haemorrhagic disease virus (RHDV) was imported into Australia in 1995 as a biocontrol agent to manage one of the most successful and devastating invasive species, the European rabbit (Oryctolagus cuniculus). During the first outbreaks of the disease, RHDV caused mortality rates of up to 97%. Recently, however, increased genetic resistance to RHDV has been reported. Here, we have aimed to identify genomic differences between rabbits that survived a natural infection with RHDV and those that died in the field using a genomewide next-generation sequencing (NGS) approach. We detected 72 SNPs corresponding to 133 genes associated with survival of a RHD infection. Most of the identified genes have known functions in virus infections and replication, immune responses or apoptosis, or have previously been found to be regulated during RHD. Some of the genes identified in experimental studies, however, did not seem to play a role under natural selection regimes, highlighting the importance of field studies to complement the genomic background of wildlife diseases. Our study provides a set of candidate markers as a tool for the future scanning of wild rabbits for their resistance to RHDV. This is important both for wild rabbit populations in southern Europe where RHD is regarded as a serious problem decimating the prey of endangered predator species and for assessing the success of currently planned RHDV variant biocontrol releases in Australia. KW - adaptation KW - genetic resistance KW - host-pathogen coevolution KW - natural selection KW - rabbit KW - rabbit haemorrhagic disease virus Y1 - 2017 U6 - https://doi.org/10.1111/mec.14228 SN - 0962-1083 SN - 1365-294X VL - 26 SP - 4551 EP - 4561 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Kreibich, Heidi A1 - Di Baldassarre, Giuliano A1 - Vorogushyn, Sergiy A1 - Aerts, Jeroen C. J. H. A1 - Apel, Heiko A1 - Aronica, Giuseppe T. A1 - Arnbjerg-Nielsen, Karsten A1 - Bouwer, Laurens M. A1 - Bubeck, Philip A1 - Caloiero, Tommaso A1 - Chinh, Do T. A1 - Cortes, Maria A1 - Gain, Animesh K. A1 - Giampa, Vincenzo A1 - Kuhlicke, Christian A1 - Kundzewicz, Zbigniew W. A1 - Llasat, Maria Carmen A1 - Mard, Johanna A1 - Matczak, Piotr A1 - Mazzoleni, Maurizio A1 - Molinari, Daniela A1 - Dung, Nguyen V. A1 - Petrucci, Olga A1 - Schröter, Kai A1 - Slager, Kymo A1 - Thieken, Annegret A1 - Ward, Philip J. A1 - Merz, Bruno T1 - Adaptation to flood risk BT - Results of international paired flood event studies JF - Earth's Future N2 - As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in the same region, with the second flood causing significantly lower damage. These success stories of risk reduction were selected across different socioeconomic and hydro-climatic contexts. The potential of societies to adapt is uncovered by describing triggered societal changes, as well as formal measures and spontaneous processes that reduced flood risk. This novel approach has the potential to build the basis for an international data collection and analysis effort to better understand and attribute changes in risk due to hydrological extremes in the framework of the IAHSs Panta Rhei initiative. Across all case studies, we find that lower damage caused by the second event was mainly due to significant reductions in vulnerability, for example, via raised risk awareness, preparedness, and improvements of organizational emergency management. Thus, vulnerability reduction plays an essential role for successful adaptation. Our work shows that there is a high potential to adapt, but there remains the challenge to stimulate measures that reduce vulnerability and risk in periods in which extreme events do not occur. KW - flooding KW - vulnerability KW - global environmental change KW - adaptation Y1 - 2017 U6 - https://doi.org/10.1002/2017EF000606 SN - 2328-4277 VL - 5 SP - 953 EP - 965 PB - Wiley CY - Hoboken ER -