TY - JOUR A1 - Schulz, Katharina A1 - Voigt, Karsten A1 - Beusch, Christine A1 - Almeida-Cortez, Jarcilene S. A1 - Kowarik, Ingo A1 - Walz, Ariane A1 - Cierjacks, Arne T1 - Grazing deteriorates the soil carbon stocks of Caatinga forest ecosystems in Brazil JF - Forest ecology and management N2 - Grazing by domestic ungulates can have substantial impacts on forests in arid and semi-arid regions, possibly including severe loss of carbon from the soil. Predicting net livestock impacts on soil organic carbon stocks remains challenging, however, due to the dependence on animal loads and on soil and environmental parameters. The objective of this study was to better understand grazing effects on soil organic carbon in seasonal tropical dry forests of north-eastern Brazil (Caatinga) by quantifying carbon stocks of the upper soil profile (0–5 cm depth) and greater soil depths (>5 cm depth down to bedrock) along a gradient of grazing intensity while accounting for other influencing factors such as soil texture, vegetation, landscape topography, and water availability. We analysed soil organic carbon, soil clay content, altitude above sea level, soil depth to bedrock, distance to the nearest permanent water body, species diversity of perennial plants and aboveground biomass on 45 study plots located in the vicinity of the Itaparica Reservoir, Pernambuco, Brazil. Livestock (mainly goats and cattle) are unevenly distributed in the studied ecosystem, thus grazing intensity was accounted for based on the weight of livestock droppings per square metre and classified as no or light, intermediate, or heavy grazing. The mean soil organic carbon in the area was 16.86 ± 1.28 Mg ha−1 C with approximately one-quarter found in the upper 5 cm of the soil profile (4.14 ± 0.43 Mg ha−1 C) and the remainder (12.57 ± 0.97 Mg ha−1 C) in greater soil depths (>5 cm). Heavy grazing led to significantly lower soil organic carbon stocks in the upper 5 cm, whereas no effect on soil organic carbon of the soil overall or in greater soil depths was detectable. The soil’s clay content and the altitude proved to be the most relevant factors influencing overall soil organic carbon stocks and those in greater soil depths (>5 cm). Our findings suggest that grazing causes substantial release of carbon from Brazilian dry forest soils, which should be addressed through improved grazing management via a legally compulsory rotation system. This would ultimately contribute to the conservation of a unique forest system and associated ecosystem services. KW - Carbon cycle KW - Degradation KW - Desertification KW - Livestock KW - Semi-arid KW - Soil Y1 - 2016 U6 - https://doi.org/10.1016/j.foreco.2016.02.011 SN - 0378-1127 SN - 1872-7042 VL - 367 SP - 62 EP - 70 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Gurke, Marie A1 - Vidal-Gorosquieta, Amalia A1 - Pajimans, Johanna L. A. A1 - Wȩcek, Karolina A1 - Barlow, Axel A1 - González-Fortes, Gloria M. A1 - Hartmann, Stefanie A1 - Grandal-d’Anglade, Aurora A1 - Hofreiter, Michael T1 - Insight into the introduction of domestic cattle and the process of Neolithization to the Spanish region Galicia by genetic evidence JF - PLoS ONE N2 - Domestic cattle were brought to Spain by early settlers and agricultural societies. Due to missing Neolithic sites in the Spanish region of Galicia, very little is known about this process in this region. We sampled 18 cattle subfossils from different ages and different mountain caves in Galicia, of which 11 were subject to sequencing of the mitochondrial genome and phylogenetic analysis, to provide insight into the introduction of cattle to this region. We detected high similarity between samples from different time periods and were able to compare the time frame of the first domesticated cattle in Galicia to data from the connecting region of Cantabria to show a plausible connection between the Neolithization of these two regions. Our data shows a close relationship of the early domesticated cattle of Galicia and modern cow breeds and gives a general insight into cattle phylogeny. We conclude that settlers migrated to this region of Spain from Europe and introduced common European breeds to Galicia. KW - Haplogroups KW - Mitochondria KW - Cattle KW - Genomics KW - Domestic animals KW - Livestock KW - Single nucleotide polymorphisms KW - Neolithic period Y1 - 2020 U6 - https://doi.org/10.1371/journal.pone.0249537 SN - 1932-6203 VL - 16 IS - 4 PB - Public Library of Science CY - San Francisco ER - TY - JOUR A1 - Guo, Tong A1 - Lohmann, Dirk A1 - Ratzmann, Gregor A1 - Tietjen, Britta T1 - Response of semi-arid savanna vegetation composition towards grazing along a precipitation gradient-The effect of including plant heterogeneity into an ecohydrological savanna model JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Ecohydrological models of savanna rangeland systems typically aggregate plant species to very broad plant functional types (PFTs), which are characterized by their trait combinations. However, neglecting trait variability within modelled PFTs may hamper our ability to understand the effects of climate or land use change on vegetation composition and thus on ecosystem processes. In this study we extended and parameterized the ecohydrological savanna model EcoHyD, which originally considered only three broad PFTs (perennial grasses, annuals and shrubs). We defined several sub-types of perennial grasses (sub-PFTs) to assess the effect of environmental conditions on vegetation composition and ecosystem functioning. These perennial sub-PFTs are defined by altering distinct trait values based on a trade-off approach for (i) the longevity of plants and (ii) grazing-resistance. We find that increasing grazing intensity leads to a dominance of the fast-growing and short-lived perennial grass type as well as a dominance of the poorly palatable grass type. Increasing precipitation dampens the magnitude of grazing-induced shifts between perennial grass types. The diversification of perennial grass PFTs generally increases the total perennial grass cover and ecosystem water use efficiency, but does not protect the community from shrub encroachment. We thus demonstrate that including trait heterogeneity into ecosystem models will allow for an improved representation of ecosystem responses to environmental change in savannas. This will help to better assess how ecosystem functions might be impacted under future conditions. (C) 2016 Elsevier B.V. All rights reserved. KW - Plant functional types KW - Trait heterogeneity KW - Rangeland management KW - Precipitation gradient KW - Livestock KW - Ecosystem functioning Y1 - 2016 U6 - https://doi.org/10.1016/j.ecolmodel.2016.01.004 SN - 0304-3800 SN - 1872-7026 VL - 325 SP - 47 EP - 56 PB - Elsevier CY - Amsterdam ER -