TY - JOUR A1 - Wasiolka, Bernd A1 - Blaum, Niels T1 - Comparing biodiversity between protected savanna and adjacent non-protected farmland in the southern Kalahari JF - Journal of arid environments N2 - In this study we investigated the effect of different land use options (wildlife versus livestock) on species richness of plants and reptiles in the protected Kgalagadi Transfrontier Park (KTP) versus adjacent non-protected farmland within the same savanna habitat type (Aoub dune veld) in the southern Kalahari, South Africa. Our results show that both plant and reptile species richness as well as plant cover and reptile abundance was significantly higher in the protected KTP than in the non-protected farmland. The higher proportion of shrub but lower proportions of perennial grass cover, herb cover, and herb species richness in the farmland can be explained by higher stocking rates and the differences in feeding behaviour between native wild ungulates (e.g. Antidorcas marsupialis, Oryx gazella) and livestock (mainly sheep). The reptile's prey availability and microhabitats (perennial grass tussocks and rodent burrows) for thermoregulation and protection against predators were significantly lower in the farmland. To conclude, our results clearly show that long term effects of different land use options (wildlife in protected KTP versus extensive livestock production in the non-protected farmland) even within the same habitat type have led to significant changes in vegetation composition, availability of microhabitat structures and in the reptile community. KW - Kgalagadi Transfrontier Park KW - Rangeland KW - Degradation KW - Species richness KW - Conservation KW - Reptile Y1 - 2011 U6 - https://doi.org/10.1016/j.jaridenv.2011.04.011 SN - 0140-1963 VL - 75 IS - 9 SP - 836 EP - 841 PB - Elsevier CY - London ER - TY - JOUR A1 - Schulz, Katharina A1 - Voigt, Karsten A1 - Beusch, Christine A1 - Almeida-Cortez, Jarcilene S. A1 - Kowarik, Ingo A1 - Walz, Ariane A1 - Cierjacks, Arne T1 - Grazing deteriorates the soil carbon stocks of Caatinga forest ecosystems in Brazil JF - Forest ecology and management N2 - Grazing by domestic ungulates can have substantial impacts on forests in arid and semi-arid regions, possibly including severe loss of carbon from the soil. Predicting net livestock impacts on soil organic carbon stocks remains challenging, however, due to the dependence on animal loads and on soil and environmental parameters. The objective of this study was to better understand grazing effects on soil organic carbon in seasonal tropical dry forests of north-eastern Brazil (Caatinga) by quantifying carbon stocks of the upper soil profile (0–5 cm depth) and greater soil depths (>5 cm depth down to bedrock) along a gradient of grazing intensity while accounting for other influencing factors such as soil texture, vegetation, landscape topography, and water availability. We analysed soil organic carbon, soil clay content, altitude above sea level, soil depth to bedrock, distance to the nearest permanent water body, species diversity of perennial plants and aboveground biomass on 45 study plots located in the vicinity of the Itaparica Reservoir, Pernambuco, Brazil. Livestock (mainly goats and cattle) are unevenly distributed in the studied ecosystem, thus grazing intensity was accounted for based on the weight of livestock droppings per square metre and classified as no or light, intermediate, or heavy grazing. The mean soil organic carbon in the area was 16.86 ± 1.28 Mg ha−1 C with approximately one-quarter found in the upper 5 cm of the soil profile (4.14 ± 0.43 Mg ha−1 C) and the remainder (12.57 ± 0.97 Mg ha−1 C) in greater soil depths (>5 cm). Heavy grazing led to significantly lower soil organic carbon stocks in the upper 5 cm, whereas no effect on soil organic carbon of the soil overall or in greater soil depths was detectable. The soil’s clay content and the altitude proved to be the most relevant factors influencing overall soil organic carbon stocks and those in greater soil depths (>5 cm). Our findings suggest that grazing causes substantial release of carbon from Brazilian dry forest soils, which should be addressed through improved grazing management via a legally compulsory rotation system. This would ultimately contribute to the conservation of a unique forest system and associated ecosystem services. KW - Carbon cycle KW - Degradation KW - Desertification KW - Livestock KW - Semi-arid KW - Soil Y1 - 2016 U6 - https://doi.org/10.1016/j.foreco.2016.02.011 SN - 0378-1127 SN - 1872-7042 VL - 367 SP - 62 EP - 70 PB - Elsevier CY - Amsterdam ER -