TY - JOUR A1 - Clegg, Mark R. A1 - Wacker, Alexander A1 - Spijkerman, Elly T1 - Phenotypic Diversity and Plasticity of Photoresponse Across an Environmentally Contrasting Family of Phytoflagellates JF - Frontiers in plant science : FPLS N2 - Organisms often employ ecophysiological strategies to exploit environmental conditions and ensure bio-energetic success. However, the many complexities involved in the differential expression and flexibility of these strategies are rarely fully understood. Therefore, for the first time, using a three-part cross-disciplinary laboratory experimental analysis, we investigated the diversity and plasticity of photoresponsive traits employed by one family of environmentally contrasting, ecologically important phytoflagellates. The results demonstrated an extensive inter-species phenotypic diversity of behavioural, physiological, and compositional photoresponse across the Chlamydomonadaceae, and a multifaceted intra-species phenotypic plasticity, involving a broad range of beneficial photoacclimation strategies, often attributable to environmental predisposition and phylogenetic differentiation. Deceptively diverse and sophisticated strong (population and individual cell) behavioural photoresponses were observed, with divergence from a general preference for low light (and flexibility) dictated by intra-familial differences in typical habitat (salinity and trophy) and phylogeny. Notably, contrasting lower, narrow, and flexible compared with higher, broad, and stable preferences were observed in freshwater vs. brackish and marine species. Complex diversity and plasticity in physiological and compositional photoresponses were also discovered. Metabolic characteristics (such as growth rates, respiratory costs and photosynthetic capacity, efficiency, compensation and saturation points) varied elaborately with species, typical habitat (often varying more in eutrophic species, such as Chlamydomonas reinhardtii), and culture irradiance (adjusting to optimise energy acquisition and suggesting some propensity for low light). Considerable variations in intracellular pigment and biochemical composition were also recorded. Photosynthetic and accessory pigments (such as chlorophyll a, xanthophyll-cycle components, chlorophyll a:b and chlorophyll a:carotenoid ratios, fatty acid content and saturation ratios) varied with phylogeny and typical habitat (to attune photosystem ratios in different trophic conditions and to optimise shade adaptation, photoprotection, and thylakoid architecture, particularly in freshwater environments), and changed with irradiance (as reaction and harvesting centres adjusted to modulate absorption and quantum yield). The complex, concomitant nature of the results also advocated an integrative approach in future investigations. Overall, these nuanced, diverse, and flexible photoresponsive traits will greatly contribute to the functional ecology of these organisms, addressing environmental heterogeneity and potentially shaping individual fitness, spatial and temporal distribution, prevalence, and ecosystem dynamics. KW - photoresponse KW - behaviour KW - physiology KW - composition KW - photosynthesis KW - acclimation KW - Chlamydomonas KW - ecophysiology Y1 - 2021 U6 - https://doi.org/10.3389/fpls.2021.707541 SN - 1664-462X IS - 12 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Scheiner, Ricarda A1 - Abramson, Charles I. A1 - Brodschneider, Robert A1 - Crailsheim, Karl A1 - Farina, Walter M. A1 - Fuchs, Stefan A1 - Grünewald, Bernd A1 - Hahshold, Sybille A1 - Karrer, Marlene A1 - Koeniger, Gudrun A1 - Königer, Niko A1 - Menzel, Randolf A1 - Mujagic, Samir A1 - Radspieler, Gerald A1 - Schmickl, Thomas A1 - Schneider, Christof A1 - Siegel, Adam J. A1 - Szopek, Martina A1 - Thenius, Ronald T1 - Standard methods for behavioural studies of Apis mellifera JF - Journal of apicultural research N2 - In this BEEBOOK paper we present a set of established methods for quantifying honey bee behaviour. We start with general methods for preparing bees for behavioural assays. Then we introduce assays for quantifying sensory responsiveness to gustatory, visual and olfactory stimuli. Presentation of more complex behaviours like appetitive and aversive learning under controlled laboratory conditions and learning paradigms under free-flying conditions will allow the reader to investigate a large range of cognitive skills in honey bees. Honey bees are very sensitive to changing temperatures. We therefore present experiments which aim at analysing honey bee locomotion in temperature gradients. The complex flight behaviour of honey bees can be investigated under controlled conditions in the laboratory or with sophisticated technologies like harmonic radar or RFID in the field. These methods will be explained in detail in different sections. Honey bees are model organisms in behavioural biology for their complex yet plastic division of labour. To observe the daily behaviour of individual bees in a colony, classical observation hives are very useful. The setting up and use of typical observation hives will be the focus of another section. The honey bee dance language has important characteristics of a real language and has been the focus of numerous studies. We here discuss the background of the honey bee dance language and describe how it can be studied. Finally, the mating of a honey bee queen with drones is essential to survival of the entire colony. We here give detailed and structured information how the mating behaviour of drones and queens can be observed and experimentally manipulated. The ultimate goal of this chapter is to provide the reader with a comprehensive set of experimental protocols for detailed studies on all aspects of honey bee behaviour including investigation of pesticide and insecticide effects. KW - COLOSS KW - BEEBOOK KW - honey bee KW - behaviour KW - gustatory responsiveness KW - olfactory responsiveness KW - phototaxis KW - non-associative learning KW - associative learning KW - appetitive learning KW - aversive learning KW - locomotion KW - temperature sensing KW - honey bee flight KW - observation hive KW - honey bee dance KW - honey bee navigation KW - harmonic radar KW - BeeScan KW - RFID KW - honey bee mating KW - free-flying honey bees Y1 - 2013 U6 - https://doi.org/10.3896/IBRA.1.52.4.04 SN - 0021-8839 SN - 2078-6913 VL - 52 IS - 4 PB - International Bee Research Association CY - Cardiff ER - TY - JOUR A1 - Schneeberger, Karin A1 - Taborsky, Michael T1 - The role of sensory ecology and cognition in social decisions BT - costs of acquiring information matter JF - Functional ecology : an official journal of the British Ecological Society N2 - 1. We generally assume that animals should maximize information acquisition about their environment to make prudent decisions. But this is a naive assumption, as gaining information typically involves costs.
2. This is especially so in the social context, where interests between interacting partners usually diverge. The arms race involved in mutual assessment is characterized by the attempt to obtain revealing information from a partner while providing only as much information by oneself as is conducive to one's own intentions.
3. If obtaining information occasions costs in terms of time, energy and risk, animals should be selected to base their decisions on a cost-benefit ratio that takes account of the trade-off between the risk of making wrong choices and the costs involved in information acquisition, processing and use.
4. In addition, there may be physiological and/or environmental constraints limiting the ability to obtaining, processing and utilizing reliable information.
5. Here, we discuss recent empirical evidence for the proposition that social decisions are to an important extent based on the costs that result from acquiring, processing, evaluating and storing information. Using examples from different taxa and ecological contexts, we aim at drawing attention to the often neglected costs of information recipience, with emphasis on the potential role of sensory ecology and cognition in social decisions. KW - behaviour KW - constrains KW - costs KW - decisions KW - signals KW - sociality KW - trade-offs Y1 - 2020 U6 - https://doi.org/10.1111/1365-2435.13488 SN - 0269-8463 SN - 1365-2435 VL - 34 IS - 2 SP - 302 EP - 309 PB - Wiley CY - Hoboken ER -