TY - JOUR A1 - Cheng, X. A1 - Ding, M. D. A1 - Zhang, J. A1 - Sun, X. D. A1 - Guo, Y. A1 - Wang, Yi-Ming A1 - Kliem, Bernhard A1 - Deng, Y. Y. T1 - Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s(-1). The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region. KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) KW - Sun: filaments, prominences KW - Sun: magnetic fields Y1 - 2014 U6 - https://doi.org/10.1088/0004-637X/789/2/93 SN - 0004-637X SN - 1538-4357 VL - 789 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Cheng, Xin A1 - Kliem, Bernhard A1 - Ding, Mingde T1 - Unambiguous evidence of filament splitting-induced partial eruptions JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Coronal mass ejections are often considered to result from the full eruption of a magnetic flux rope (MFR). However, it is recognized that, in some events, the MFR may release only part of its flux, with the details of the implied splitting not completely established due to limitations in observations. Here, we investigate two partial eruption events including a confined and a successful one. Both partial eruptions are a consequence of the vertical splitting of a filament-hosting MFR involving internal reconnection. A loss of equilibrium in the rising part of the magnetic flux is suggested by the impulsive onset of both events and by the delayed onset of reconnection in the confined event. The remaining part of the flux might be line-tied to the photosphere in a bald patch (BP) separatrix surface, and we confirm the existence of extended BP sections for the successful eruption. The internal reconnection is signified by brightenings in the body of one filament and between the rising and remaining parts of both filaments. It evolves quickly into the standard current sheet reconnection in the wake of the eruption. As a result, regardless of being confined or successful, both eruptions produce hard X-ray sources and flare loops below the erupting but above the surviving flux, as well as a pair of flare ribbons enclosing the latter. KW - Sun: magnetic fields KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) KW - Sun: flares Y1 - 2018 U6 - https://doi.org/10.3847/1538-4357/aab08d SN - 0004-637X SN - 1538-4357 VL - 856 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Denker, Carsten A1 - Heibel, C. A1 - Rendtel, J. A1 - Arlt, K. A1 - Balthasar, H. A1 - Diercke, Andrea A1 - Gonzalez Manrique, Sergio Javier A1 - Hofmann, A. A1 - Kuckein, Christoph A1 - Önel, H. A1 - Valliappan, Senthamizh Pavai A1 - Staude, J. A1 - Verma, Meetu T1 - Solar physics at the Einstein Tower JF - Astronomische Nachrichten = Astronomical notes KW - history and philosophy of astronomy KW - Sun: photosphere KW - Sun: magnetic fields KW - techniques: spectroscopic KW - telescopes Y1 - 2016 U6 - https://doi.org/10.1002/asna.201612442 SN - 0004-6337 SN - 1521-3994 VL - 337 SP - 1105 EP - 1113 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Gömöry, Peter A1 - Balthasar, Horst A1 - Kuckein, Christoph A1 - Koza, Julis A1 - Veronig, Astrid M. A1 - González Manrique, Sergio Javier A1 - Kucera, Ales A1 - Schwartz, Pavol A1 - Hanslmeier, Arnold T1 - Flare-induced changes of the photospheric magnetic field in a delta-spot deduced from ground-based observations JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. Changes of the magnetic field and the line-of-sight velocities in the photosphere are being reported for an M-class flare that originated at a delta-spot belonging to active region NOAA 11865. Methods. High-resolution ground-based near-infrared spectropolarimetric observations were acquired simultaneously in two photospheric spectral lines, Fe I 10783 angstrom and Si I 10786 angstrom, with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope (VTT) in Tenerife on 2013 October 15. The observations covered several stages of the M-class flare. Inversions of the full-Stokes vector of both lines were carried out and the results were put into context using (extreme)-ultraviolet filtergrams from the Solar Dynamics Observatory (SDO). Results. The active region showed high flaring activity during the whole observing period. After the M-class flare, the longitudinal magnetic field did not show significant changes along the polarity inversion line (PIL). However, an enhancement of the transverse magnetic field of approximately 550G was found that bridges the PIL and connects umbrae of opposite polarities in the delta-spot. At the same time, a newly formed system of loops appeared co-spatially in the corona as seen in 171 angstrom filtergrams of the Atmospheric Imaging Assembly (AIA) on board SDO. However, we cannot exclude that the magnetic connection between the umbrae already existed in the upper atmosphere before the M-class flare and became visible only later when it was filled with hot plasma. The photospheric Doppler velocities show a persistent upflow pattern along the PIL without significant changes due to the flare. Conclusions. The increase of the transverse component of the magnetic field after the flare together with the newly formed loop system in the corona support recent predictions of flare models and flare observations. KW - Sun: magnetic fields KW - sunspots KW - Sun: photosphere KW - Sun: flares KW - techniques: polarimetric Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201730644 SN - 1432-0746 VL - 602 SP - 14 EP - 27 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Kliem, Bernhard A1 - Lin, J. A1 - Forbes, T. G. A1 - Priest, E. R. A1 - Toeroek, T. T1 - Catastrophe versus instability for the eruption of a toroadal solar magnetic flux JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The onset of a solar eruption is formulated here as either a magnetic catastrophe or as an instability. Both start with the same equation of force balance governing the underlying equilibria. Using a toroidal flux rope in an external bipolar or quadrupolar field as a model for the current-carrying flux, we demonstrate the occurrence of a fold catastrophe by loss of equilibrium for several representative evolutionary sequences in the stable domain of parameter space. We verify that this catastrophe and the torus instability occur at the same point; they are thus equivalent descriptions for the onset condition of solar eruptions. KW - magnetohydrodynamics (MHD) KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) KW - Sun: filaments, prominences KW - Sun: flares KW - Sun: magnetic fields Y1 - 2014 U6 - https://doi.org/10.1088/0004-637X/789/1/46 SN - 0004-637X SN - 1538-4357 VL - 789 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Kliem, Bernhard A1 - Su, Y. N. A1 - van Ballegooijen, A. A. A1 - DeLuca, E. E. T1 - Magnetohydrodynamic modeling of the solar eruption on 2010 APRIL 8 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The structure of the coronal magnetic field prior to eruptive processes and the conditions for the onset of eruption are important issues that can be addressed through studying the magnetohydrodynamic (MHD) stability and evolution of nonlinear force-free field (NLFFF) models. This paper uses data-constrained NLFFF models of a solar active region (AR) that erupted on 2010 April 8 as initial conditions in MHD simulations. These models, constructed with the techniques of flux rope insertion and magnetofrictional relaxation (MFR), include a stable, an approximately marginally stable, and an unstable configuration. The simulations confirm previous related results of MFR runs, particularly that stable flux rope equilibria represent key features of the observed pre-eruption coronal structure very well, and that there is a limiting value of the axial flux in the rope for the existence of stable NLFFF equilibria. The specific limiting value is located within a tighter range, due to the sharper discrimination between stability and instability by the MHD description. The MHD treatment of the eruptive configuration yields a very good agreement with a number of observed features, like the strongly inclined initial rise path and the close temporal association between the coronal mass ejection and the onset of flare reconnection. Minor differences occur in the velocity of flare ribbon expansion and in the further evolution of the inclination; these can be eliminated through refined simulations. We suggest that the slingshot effect of horizontally bent flux in the source region of eruptions can contribute significantly to the inclination of the rise direction. Finally, we demonstrate that the onset criterion, formulated in terms of a threshold value for the axial flux in the rope, corresponds very well to the threshold of the torus instability in the considered AR. KW - magnetohydrodynamics (MHD) KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) KW - Sun: filaments, prominences KW - Sun: flares KW - Sun: magnetic fields Y1 - 2013 U6 - https://doi.org/10.1088/0004-637X/779/2/129 SN - 0004-637X SN - 1538-4357 VL - 779 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Lee, Jeongwoo A1 - White, Stephen M. A1 - Liu, Chang A1 - Kliem, Bernhard A1 - Masuda, Satoshi T1 - Magnetic Structure of a Composite Solar Microwave Burst JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - A composite flare consisting of an impulsive flare SOL2015-06-21T01:42 (GOES class M2.0) and a more gradual, long-duration flare SOL2015-06-21T02:36 (M2.6) from NOAA Active Region 12371, is studied using observations with the Nobeyama Radioheliograph (NoRH) and the Solar Dynamics Observatory (SDO). While composite flares are defined by their characteristic time profiles, in this paper we present imaging observations that demonstrate the spatial relationship of the two flares and allow us to address the nature of the evolution of a composite event. The NoRH maps show that the first flare is confined not only in time, but also in space, as evidenced by the stagnation of ribbon separation and the stationarity of the microwave source. The NoRH also detected another microwave source during the second flare, emerging from a different location where thermal plasma is so depleted that accelerated electrons could survive longer against Coulomb collisional loss. The AIA 131 angstrom images show that a sigmoidal EUV hot channel developed after the first flare and erupted before the second flare. We suggest that this eruption removed the high-lying flux to let the separatrix dome underneath reconnect with neighboring flux and the second microwave burst follow. This scenario explains how the first microwave burst is related to the much-delayed second microwave burst in this composite event. KW - Sun: activity KW - Sun: coronal mass ejections (CMEs) KW - Sun: flares KW - Sun: magnetic fields KW - Sun: radio radiation KW - Sun: UV radiation Y1 - 2018 U6 - https://doi.org/10.3847/1538-4357/aaadbc SN - 0004-637X SN - 1538-4357 VL - 856 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Liu, Rui A1 - Kliem, Bernhard A1 - Titov, Viacheslav S. A1 - Chen, Jun A1 - Wang, Yuming A1 - Wang, Haimin A1 - Liu, Chang A1 - Xu, Yan A1 - Wiegelmann, Thomas T1 - STRUCTURE, STABILITY, AND EVOLUTION OF MAGNETIC FLUX ROPES FROM THE PERSPECTIVE OF MAGNETIC TWIST JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We investigate the evolution of NOAA Active Region (AR) 11817 during 2013 August 10–12, when it developed a complex field configuration and produced four confined, followed by two eruptive, flares. These C-and-above flares are all associated with a magnetic flux rope (MFR) located along the major polarity inversion line, where shearing and converging photospheric flows are present. Aided by the nonlinear force-free field modeling, we identify the MFR through mapping magnetic connectivities and computing the twist number ${{ \mathcal T }}_{w}$ for each individual field line. The MFR is moderately twisted ($| {{ \mathcal T }}_{w}| \lt 2$) and has a well-defined boundary of high squashing factor Q. We found that the field line with the extremum $| {{ \mathcal T }}_{w}| $ is a reliable proxy of the rope axis, and that the MFR's peak $| {{ \mathcal T }}_{w}| $ temporarily increases within half an hour before each flare while it decreases after the flare peak for both confined and eruptive flares. This pre-flare increase in $| {{ \mathcal T }}_{w}| $ has little effect on the AR's free magnetic energy or any other parameters derived for the whole region, due to its moderate amount and the MFR's relatively small volume, while its decrease after flares is clearly associated with the stepwise decrease in the whole region's free magnetic energy due to the flare. We suggest that ${{ \mathcal T }}_{w}$ may serve as a useful parameter in forewarning the onset of eruption, and therefore, the consequent space weather effects. The helical kink instability is identified as the prime candidate onset mechanism for the considered flares. KW - coronal mass ejections (CMEs) KW - Sun: corona KW - Sun: filaments, pominences KW - Sun: flares KW - Sun: magnetic fields Y1 - 2016 U6 - https://doi.org/10.3847/0004-637X/818/2/148 SN - 0004-637X SN - 1538-4357 VL - 818 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Martinez Gonzalez, M. J. A1 - Pastor Yabar, A. A1 - Lagg, A. A1 - Asensio Ramos, A. A1 - Collados Vera, M. A1 - Solanki, S. K. A1 - Balthasar, H. A1 - Berkefeld, T. A1 - Denker, Carsten A1 - Doerr, H. P. A1 - Feller, A. A1 - Franz, M. A1 - González Manrique, Sergio Javier A1 - Hofmann, A. A1 - Kneer, F. A1 - Kuckein, Christoph A1 - Louis, R. A1 - von der Lühe, O. A1 - Nicklas, H. A1 - Orozco, D. A1 - Rezaei, R. A1 - Schlichenmaier, R. A1 - Schmidt, D. A1 - Schmidt, W. A1 - Sigwarth, M. A1 - Sobotka, M. A1 - Soltau, D. A1 - Staude, J. A1 - Strassmeier, Klaus G. A1 - Verma, Meetu A1 - Waldman, T. A1 - Volkmer, R. T1 - Inference of magnetic fields in the very quiet Sun JF - Journal of geophysical research : Earth surface N2 - Context. Over the past 20 yr, the quietest areas of the solar surface have revealed a weak but extremely dynamic magnetism occurring at small scales (<500 km), which may provide an important contribution to the dynamics and energetics of the outer layers of the atmosphere. Understanding this magnetism requires the inference of physical quantities from high-sensitivity spectro-polarimetric data with high spatio-temporal resolution. Aims. We present high-precision spectro-polarimetric data with high spatial resolution (0.4") of the very quiet Sun at 1.56 mu m obtained with the GREGOR telescope to shed some light on this complex magnetism. Methods. We used inversion techniques in two main approaches. First, we assumed that the observed profiles can be reproduced with a constant magnetic field atmosphere embedded in a field-free medium. Second, we assumed that the resolution element has a substructure with either two constant magnetic atmospheres or a single magnetic atmosphere with gradients of the physical quantities along the optical depth, both coexisting with a global stray-light component. Results. Half of our observed quiet-Sun region is better explained by magnetic substructure within the resolution element. However, we cannot distinguish whether this substructure comes from gradients of the physical parameters along the line of sight or from horizontal gradients (across the surface). In these pixels, a model with two magnetic components is preferred, and we find two distinct magnetic field populations. The population with the larger filling factor has very weak (similar to 150 G) horizontal fields similar to those obtained in previous works. We demonstrate that the field vector of this population is not constrained by the observations, given the spatial resolution and polarimetric accuracy of our data. The topology of the other component with the smaller filling factor is constrained by the observations for field strengths above 250 G: we infer hG fields with inclinations and azimuth values compatible with an isotropic distribution. The filling factors are typically below 30%. We also find that the flux of the two polarities is not balanced. From the other half of the observed quiet-Sun area similar to 50% are two-lobed Stokes V profiles, meaning that 23% of the field of view can be adequately explained with a single constant magnetic field embedded in a non-magnetic atmosphere. The magnetic field vector and filling factor are reliable inferred in only 50% based on the regular profiles. Therefore, 12% of the field of view harbour hG fields with filling factors typically below 30%. At our present spatial resolution, 70% of the pixels apparently are non-magnetised. KW - Sun: atmosphere KW - Sun: magnetic fields KW - techniques: polarimetric KW - methods: observational Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201628449 SN - 1432-0746 VL - 596 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Nishikawa, Ken-Ichi A1 - Frederiksen, J. T. A1 - Nordlund, A. A1 - Mizuno, Y. A1 - Hardee, P. E. A1 - Niemiec, J. A1 - Gomez, J. L. A1 - Dutan, I. A1 - Meli, A. A1 - Sol, H. A1 - Pohl, Martin A1 - Hartmann, D. H. T1 - EVOLUTION OF GLOBAL RELATIVISTIC JETS: COLLIMATIONS AND EXPANSION WITH kKHI AND THE WEIBEL INSTABILITY JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - In the study of relativistic jets one of the key open questions is their interaction with the environment. Here. we study the initial evolution of both electron-proton (e(-) - p(+)) and electron-positron (e(+/-)) relativistic jets, focusing on their lateral interaction with ambient plasma. We follow the evolution of toroidal magnetic fields generated by both the kinetic Kelvin-Helmholtz and Mushroom instabilities. For an e(-) - p(+) jet, the induced magnetic field collimates the jet and electrons are perpendicularly accelerated. As the instabilities saturate and subsequently weaken, the magnetic polarity switches from clockwise to counterclockwise in the middle of the jet. For an e(+/-) jet, we find strong mixing of electrons and positrons with the ambient plasma, resulting in the creation of a bow shock. The merging of current filaments generates density inhomogeneities that. initiate a forward shock. Strong jet-ambient plasma mixing prevents a full development of the jet (on the scale studied), revealing evidence for both jet collimation and particle acceleration in the forming bow shock. Differences in the magnetic field structure generated by e(-) - p(+) and e(+/-) jets may contribute to the polarization properties of the observed emission in AGN jets and gamma-ray bursts. KW - acceleration of particles KW - plasmas KW - radiation mechanisms: non-thermal KW - relativistic processes KW - stars: jets KW - Sun: magnetic fields Y1 - 2016 U6 - https://doi.org/10.3847/0004-637X/820/2/94 SN - 0004-637X SN - 1538-4357 VL - 820 PB - IOP Publ. Ltd. CY - Bristol ER -