TY - JOUR A1 - Bohdan, Artem A1 - Niemiec, Jacek A1 - Kobzar, Oleh A1 - Pohl, Martin T1 - Electron Pre-acceleration at Nonrelativistic High-Mach-number Perpendicular Shocks JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We perform particle-in-cell simulations of perpendicular nonrelativistic collisionless shocks to study electron heating and pre-acceleration for parameters that permit the extrapolation to the conditions at young supernova remnants. Our high-resolution large-scale numerical experiments sample a representative portion of the shock surface and demonstrate that the efficiency of electron injection is strongly modulated with the phase of the shock reformation. For plasmas with low and moderate temperature (plasma beta beta p =5.10(-4) and 0.5 beta p =), we explore the nonlinear shock structure and electron pre-acceleration for various orientations of the large-scale magnetic field with respect to the simulation plane, while keeping it at 90 degrees to the shock normal. Ion reflection off of the shock leads to the formation of magnetic filaments in the shock ramp, resulting from Weibel-type instabilities, and electrostatic Buneman modes in the shock foot. In all of the cases under study, the latter provides first-stage electron energization through the shock-surfing acceleration mechanism. The subsequent energization strongly depends on the field orientation and proceeds through adiabatic or second-order Fermi acceleration processes for configurations with the out-of-plane and in-plane field components, respectively. For strictly out-of-plane field, the fraction of suprathermal electrons is much higher than for other configurations, because only in this case are the Buneman modes fully captured by the 2D simulation grid. Shocks in plasma with moderate bp provide more efficient pre-acceleration. The relevance of our results to the physics of fully 3D systems is discussed. KW - acceleration of particles KW - instabilities KW - ISM: supernova remnants KW - methods: numerical KW - plasmas KW - shock Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/aa872a SN - 0004-637X SN - 1538-4357 VL - 847 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Vafin, Sergei A1 - Riazantseva, M. A1 - Yoon, P. H. T1 - Kinetic Features in the Ion Flux Spectrum JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - An interesting feature of solar wind fluctuations is the occasional presence of a well-pronounced peak near the spectral knee. These peaks are well investigated in the context of magnetic field fluctuations in the magnetosheath and they are typically related to kinetic plasma instabilities. Recently, similar peaks were observed in the spectrum of ion flux fluctuations of the solar wind and magnetosheath. In this paper, we propose a simple analytical model to describe such peaks in the ion flux spectrum based on the linear theory of plasma fluctuations. We compare our predictions with a sample observation in the solar wind. For the given observation, the peak requires similar to 10 minutes to grow up to the observed level that agrees with the quasi-linear relaxation time. Moreover, our model well reproduces the form of the measured peak in the ion flux spectrum. The observed lifetime of the peak is about 50 minutes, which is relatively close to the nonlinear Landau damping time of 30-40 minutes. Overall, our model proposes a plausible scenario explaining the observation. KW - instabilities KW - solar wind KW - turbulence KW - waves Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/aa9519 SN - 0004-637X SN - 1538-4357 VL - 850 PB - IOP Publ. Ltd. CY - Bristol ER -