TY - JOUR A1 - Gomez Zapata, Juan Camilo A1 - Zafrir, Raquel A1 - Pittore, Massimiliano A1 - Merino, Yvonne T1 - Towards a sensitivity analysis in seismic risk with probabilistic building exposure models BT - an application in Valparaiso, Chile using ancillary open-source data and parametric ground motions JF - ISPRS International Journal of Geo-Information N2 - Efforts have been made in the past to enhance building exposure models on a regional scale with increasing spatial resolutions by integrating different data sources. This work follows a similar path and focuses on the downscaling of the existing SARA exposure model that was proposed for the residential building stock of the communes of Valparaiso and Vina del Mar (Chile). Although this model allowed great progress in harmonising building classes and characterising their differential physical vulnerabilities, it is now outdated, and in any case, it is spatially aggregated over large administrative units. Hence, to more accurately consider the impact of future earthquakes on these cities, it is necessary to employ more reliable exposure models. For such a purpose, we propose updating this existing model through a Bayesian approach by integrating ancillary data that has been made increasingly available from Volunteering Geo-Information (VGI) activities. Its spatial representation is also optimised in higher resolution aggregation units that avoid the inconvenience of having incomplete building-by-building footprints. A worst-case earthquake scenario is presented to calculate direct economic losses and highlight the degree of uncertainty imposed by exposure models in comparison with other parameters used to generate the seismic ground motions within a sensitivity analysis. This example study shows the great potential of using increasingly available VGI to update worldwide building exposure models as well as its importance in scenario-based seismic risk assessment. KW - exposure KW - buildings KW - Bayesian model KW - downscaling KW - OpenStreetMap KW - ground motion fields KW - sensitivity KW - earthquake KW - vulnerability KW - risk Y1 - 2022 U6 - https://doi.org/10.3390/ijgi11020113 SN - 2220-9964 VL - 11 IS - 2 PB - MDPI CY - Basel ER - TY - THES A1 - Sharma, Shubham T1 - Integrated approaches to earthquake forecasting T1 - Integrierte Ansätze zur Vorhersage von Erdbeben BT - insights from Coulomb stress, seismotectonics, and aftershock sequences BT - Erkenntnisse aus Coulomb-Stress, Seismotektonik und Nachbebenfolgen N2 - A comprehensive study on seismic hazard and earthquake triggering is crucial for effective mitigation of earthquake risks. The destructive nature of earthquakes motivates researchers to work on forecasting despite the apparent randomness of the earthquake occurrences. Understanding their underlying mechanisms and patterns is vital, given their potential for widespread devastation and loss of life. This thesis combines methodologies, including Coulomb stress calculations and aftershock analysis, to shed light on earthquake complexities, ultimately enhancing seismic hazard assessment. The Coulomb failure stress (CFS) criterion is widely used to predict the spatial distributions of aftershocks following large earthquakes. However, uncertainties associated with CFS calculations arise from non-unique slip inversions and unknown fault networks, particularly due to the choice of the assumed aftershocks (receiver) mechanisms. Recent studies have proposed alternative stress quantities and deep neural network approaches as superior to CFS with predefined receiver mechanisms. To challenge these propositions, I utilized 289 slip inversions from the SRCMOD database to calculate more realistic CFS values for a layered-half space and variable receiver mechanisms. The analysis also investigates the impact of magnitude cutoff, grid size variation, and aftershock duration on the ranking of stress metrics using receiver operating characteristic (ROC) analysis. Results reveal the performance of stress metrics significantly improves after accounting for receiver variability and for larger aftershocks and shorter time periods, without altering the relative ranking of the different stress metrics. To corroborate Coulomb stress calculations with the findings of earthquake source studies in more detail, I studied the source properties of the 2005 Kashmir earthquake and its aftershocks, aiming to unravel the seismotectonics of the NW Himalayan syntaxis. I simultaneously relocated the mainshock and its largest aftershocks using phase data, followed by a comprehensive analysis of Coulomb stress changes on the aftershock planes. By computing the Coulomb failure stress changes on the aftershock faults, I found that all large aftershocks lie in regions of positive stress change, indicating triggering by either co-seismic or post-seismic slip on the mainshock fault. Finally, I investigated the relationship between mainshock-induced stress changes and associated seismicity parameters, in particular those of the frequency-magnitude (Gutenberg-Richter) distribution and the temporal aftershock decay (Omori-Utsu law). For that purpose, I used my global data set of 127 mainshock-aftershock sequences with the calculated Coulomb Stress (ΔCFS) and the alternative receiver-independent stress metrics in the vicinity of the mainshocks and analyzed the aftershocks properties depend on the stress values. Surprisingly, the results show a clear positive correlation between the Gutenberg-Richter b-value and induced stress, contrary to expectations from laboratory experiments. This observation highlights the significance of structural heterogeneity and strength variations in seismicity patterns. Furthermore, the study demonstrates that aftershock productivity increases nonlinearly with stress, while the Omori-Utsu parameters c and p systematically decrease with increasing stress changes. These partly unexpected findings have significant implications for future estimations of aftershock hazard. The findings in this thesis provides valuable insights into earthquake triggering mechanisms by examining the relationship between stress changes and aftershock occurrence. The results contribute to improved understanding of earthquake behavior and can aid in the development of more accurate probabilistic-seismic hazard forecasts and risk reduction strategies. N2 - Ein umfassendes Verständnis der seismischen Gefahr und Erdbebenauslösung ist wichtig für eine Minderung von Erdbebenrisiken. Die zerstörerische Natur von Erdbeben motiviert Forscher dazu, trotz der scheinbaren Zufälligkeit der Erdbebenereignisse an Vorhersagen zu arbeiten. Das Verständnis der den Beben zugrunde liegenden Mechanismen und Muster ist angesichts ihres Potenzials für weitreichende Verwüstung und den Verlust von Menschenleben von entscheidender Bedeutung. Diese Arbeit kombiniert Methoden, einschließlich der Berechnung der Coulombschen Spannung und der Analyse von Nachbeben, um die Komplexitäten von Erdbeben besser zu verstehen und letztendlich die Bewertung der seismischen Gefahr zu verbessern. Das Coulomb Spannungskriterium (CFS) wird oft verwendet, um die räumliche Verteilung von Nachbeben nach großen Erdbeben vorherzusagen. Jedoch ergeben sich Unsicherheiten bei der Berechnung von CFS aus nicht eindeutigen slip-inversion und der unbekannten Störungsnetzwerken, insbesondere aufgrund der Unsicherheit bezüglich der Nachbebenmechanismen (Empfänger). Neueste Studien deuten darauf hin dass alternative Spannungsgrößen und Deep-Learning-Ansätze gegenüber CFS mit vordefinierten Empfängermechanismen. Um diese Ergebnisse zu hinterfragen, habe ich 289 Slip-inversion uberlegensind aus der SRCMOD-Datenbank verwendet, um realistischere CFS-Werte für einen geschichteten Halbraum und variable Empfängermechanismen zu berechnen. Dabei habe ich auch den Einfluss von Magnitudenschwellenwerten, Gittergrößenvariationen und der Nachbeben-Dauer auf die vorhersagemöglichkeiten der Spannungsmetriken unter Verwendung der ROC-Analyse (Receiver Operating Characteristic) untersucht. Die Ergebnisse zeigen, dass die berudzsidtizung von variablen Empfangermechanism und größere Nachbeben und kürzere Zeiträume die vorhersagekraft steigern, wobei die relative Rangfolge der verschiedenen Spannungsmetriken nicht geändert wird. Um die Coulomb Spannungsberechnungen genauer mit den Ergebnissen von Erdbebenstudien abzugleichen, habe ich die Quelleneigenschaften des Erdbebens von Kaschmir aus dem Jahr 2005 und seiner Nachbeben mit dem ziel, die Seismotektonik des NW-Himalaya Syntaxis zu entschlüsseln, detailliert untersucht. Ich habe gleichzeitig das Hauptbeben und seine größten Nachbeben unter Verwendung von seismischen Phaseneinsetzen relokalisiert und anschließend eine umfassende Analyse der Coulomb Spannungsänderungen auf den Bruchflächen der Nachbeben durchgeführt. Durch die Berechnung der Coulomb Spannungsänderungen an den während der Nachbeben aktivierten Störungen konnte ich herausfinden, dass alle großen Nachbeben in Regionen mit positiven Spannungsänderungen liegen, was auf eine Auslösung durch entweder ko-seismische oder post-seismische Verschiebungen des Hauptbebens hinweist. Schließlich habe ich die Beziehung zwischen den durch Hauptbeben verursachten Spannungsänderungen und den damit verbundenen seismischen Parametern untersucht, insbesondere denen der Häufigkeits-Magnituden (Gutenberg-Richter) Verteilung und des zeitlichen Nachbebenabklingens (Omori-Utsu-Gesetz). Zu diesem Zweck habe ich meinen globalen Datensatz von 127 Hauptbeben-Nachbeben-Sequenzen mit den in der Umgebung der Hauptbeben berechneten Coulomb Spannungen ($\Delta$CFS) zusammen mit den alternativen, empfänger-unabhängigen Spannungsmetriken, verwendet und die Eigenschaften in Abhängigkeit der Spannungswerte analysiert. Überraschenderweise zeigen die Ergebnisse eine klar positive Korrelation zwischen dem $b$-Wert der Gutenberg-Richter-Verteilung und der induzierten Spannung, was im Kontrast zu den Erwartungen aus Laborexperimenten steht. Diese Beobachtung unterstreicht die Bedeutung struktureller Heterogenitäten und Festigkeitsvariationen in seismischen Mustern. Darüber hinaus zeigt die Studie, dass die Anzahl von Nachbeben nichtlinear mit der Spannung zunimmt, während die Omori-Utsu-Parameter $c$ und $p$ systematisch mit zunehmenden Spannungsänderungen abnehmen. Diese teilweise unerwarteten Ergebnisse haben bedeutende Auswirkungen auf zukünftige Abschätzungen der Nachbebengefahr. Die Ergebnisse dieser Arbeit liefern wertvolle Einblicke in die Mechanismen der Erdbebenauslösung, indem sie die Beziehung zwischen Spannungsänderungen und dem Auftreten von Nachbeben untersuchen. Die Ergebnisse tragen zu einem besseren Verständnis des Verhaltens von Erdbeben bei und können bei der Entwicklung genauerer probabilistischer, seismischer Gefahreneinschätzungen und Risikominderungsstrategien helfen. KW - earthquake KW - forecasting KW - hazards KW - seismology KW - Erdbeben KW - Vorhersage KW - Gefahren KW - Seismologie Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-636125 ER - TY - JOUR A1 - Nievas, Cecilia A1 - Pilz, Marco A1 - Prehn, Karsten A1 - Schorlemmer, Danijel A1 - Weatherill, Graeme A1 - Cotton, Fabrice T1 - Calculating earthquake damage building by building BT - the case of the city of Cologne, Germany JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - The creation of building exposure models for seismic risk assessment is frequently challenging due to the lack of availability of detailed information on building structures. Different strategies have been developed in recent years to overcome this, including the use of census data, remote sensing imagery and volunteered graphic information (VGI). This paper presents the development of a building-by-building exposure model based exclusively on openly available datasets, including both VGI and census statistics, which are defined at different levels of spatial resolution and for different moments in time. The initial model stemming purely from building-level data is enriched with statistics aggregated at the neighbourhood and city level by means of a Monte Carlo simulation that enables the generation of full realisations of damage estimates when using the exposure model in the context of an earthquake scenario calculation. Though applicable to any other region of interest where analogous datasets are available, the workflow and approach followed are explained by focusing on the case of the German city of Cologne, for which a scenario earthquake is defined and the potential damage is calculated. The resulting exposure model and damage estimates are presented, and it is shown that the latter are broadly consistent with damage data from the 1978 Albstadt earthquake, notwithstanding the differences in the scenario. Through this real-world application we demonstrate the potential of VGI and open data to be used for exposure modelling for natural risk assessment, when combined with suitable knowledge on building fragility and accounting for the inherent uncertainties. KW - Building exposure modelling KW - Seismic damage assessment KW - Scenario KW - earthquake KW - Seismic risk KW - Cologne Y1 - 2022 U6 - https://doi.org/10.1007/s10518-021-01303-w SN - 1570-761X SN - 1573-1456 VL - 20 IS - 3 SP - 1519 EP - 1565 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Zhu, Chuanbin A1 - Pilz, Marco A1 - Cotton, Fabrice T1 - Evaluation of a novel application of earthquake HVSR in site-specific amplification estimation JF - Soil dynamics and earthquake engineering N2 - Ground response analyses (GRA) model the vertical propagations of SH waves through flat-layered media (1DSH) and are widely carried out to evaluate local site effects in practice. Horizontal-to-vertical spectral ratio (HVSR) technique is a cost-effective approach to extract certain site-specific information, e.g., site fundamental frequency (f(0)), but HVSR values cannot be directly used to approximate the levels of S-wave amplifications. Motivated by the work of Kawase et al. (2019), we propose a procedure to correct earthquake HVSR amplitudes for direct amplification estimations. The empirical correction compensates HVSR by generic vertical amplification spectra categorized by the vertical fundamental frequency (f(0v)) via kappa-means clustering. In this investigation, we evaluate the effectiveness of the corrected HVSR in approximating observed linear amplifications in comparison with 1DSH modellings. We select a total of 90 KiK-net (Kiban Kyoshin network) surface-downhole sites which are found to have no velocity contrasts below their boreholes and thus of which surface-to-borehole spectral ratios (SBSRs) can be taken as their empirical transfer functions (ETFs). 1DSH-based theoretical transfer functions (TTFs) are computed in the linear domain considering uncertainties in Vs profiles through randomizations. Five goodness-of-fit metrics are adopted to gauge the closeness between observed (ETF) and predicted (i.e., TTF and corrected HVSR) amplifications in both amplitude and spectral shape over frequencies from f(0) to 25 Hz. We find that the empirical correction to HVSR is highly effective and achieves a "good match" in both spectral shape and amplitude at the majority of the 90 KiK-net sites, as opposed to less than one-third for the 1DSH modelling. In addition, the empirical correction does not require a velocity model, which GRAs require, and thus has great potentials in seismic hazard assessments. KW - site amplification KW - HVSR KW - ground response analysis KW - KiK-net KW - earthquake Y1 - 2020 U6 - https://doi.org/10.1016/j.soildyn.2020.106301 SN - 0267-7261 SN - 1879-341X VL - 139 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Melnick, Daniel A1 - Moreno, Marcos A1 - Quinteros, Javier A1 - Carlos Baez, Juan A1 - Deng, Zhiguo A1 - Li, Shaoyang A1 - Oncken, Onno T1 - The super-interseismic phase of the megathrust earthquake cycle in Chile JF - Geophysical research letters N2 - Along a subduction zone, great megathrust earthquakes recur either after long seismic gaps lasting several decades to centuries or over much shorter periods lasting hours to a few years when cascading successions of earthquakes rupture nearby segments of the fault. We analyze a decade of continuous Global Positioning System observations along the South American continent to estimate changes in deformation rates between the 2010 Maule (M8.8) and 2015 Illapel (M8.3) Chilean earthquakes. We find that surface velocities increased after the 2010 earthquake, in response to continental-scale viscoelastic mantle relaxation and to regional-scale increased degree of interplate locking. We propose that increased locking occurs transiently during a super-interseismic phase in segments adjacent to a megathrust rupture, responding to bending of both plates caused by coseismic slip and subsequent afterslip. Enhanced strain rates during a super-interseismic phase may therefore bring a megathrust segment closer to failure and possibly triggered the 2015 event. KW - megathrust KW - earthquake KW - cycle KW - Chile Y1 - 2017 U6 - https://doi.org/10.1002/2016GL071845 SN - 0094-8276 SN - 1944-8007 VL - 44 IS - 2 SP - 784 EP - 791 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Mohr, Christian Heinrich A1 - Manga, Michael A1 - Wald, David T1 - Stronger peak ground motion, beyond the threshold to initiate a response, does not lead to larger stream discharge responses to earthquakes JF - Geophysical research letters N2 - The impressive number of stream gauges in Chile, combined with a suite of past and recent large earthquakes, makes Chile a unique natural laboratory to study several streams that recorded responses to multiple seismic events. We document changes in discharge in eight streams in Chile following two or more large earthquakes. In all cases, discharge increases. Changes in discharge occur for peak ground velocities greater than about 7-11cm/s. Above that threshold, the magnitude of both the increase in discharge and the total excess water do not increase with increasing peak ground velocities. While these observations are consistent with previous work in California, they conflict with lab experiments that show that the magnitude of permeability changes increases with increasing amplitude of ground motion. Instead, our study suggests that streamflow responses are binary. Plain Language Summary Earthquakes deform and shake the surface and the ground below. These changes may affect groundwater flows by increasing the permeability along newly formed cracks and/or clearing clogged pores. As a result, groundwater flow may substantially increase after earthquakes and remain elevated for several months. Here we document streamflow anomalies following multiple high magnitude earthquakes in multiple streams in one of the most earthquake prone regions worldwide, Chile. We take advantage of the dense monitoring network in Chile that recorded streamflow since the 1940s. We show that once a critical ground motion is exceeded, streamflow responses to earthquakes can be expected. KW - earthquake KW - streamflow KW - shaking KW - Chile KW - modeling Y1 - 2018 U6 - https://doi.org/10.1029/2018GL078621 SN - 0094-8276 SN - 1944-8007 VL - 45 IS - 13 SP - 6523 EP - 6531 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Tolorza, Violeta A1 - Mohr, Christian Heinrich A1 - Carretier, Sebastien A1 - Serey, Amador A1 - Sepulveda, Sergio A. A1 - Tapia, Joseline A1 - Pinto, Luisa T1 - Suspended sediments in chilean rivers reveal low postseismic erosion after the maule earthquake (Mw 8.8) during a severe drought JF - Journal of geophysical research : Earth surface N2 - We address the question of whether all large-magnitude earthquakes produce an erosion peak in the subaerial components of fluvial catchments. We evaluate the sediment flux response to the Maule earthquake in the Chilean Andes (Mw 8.8) using daily suspended sediment records from 31 river gauges. The catchments cover drainage areas of 350 to around 10,000 km(2), including a wide range of topographic slopes and vegetation cover of the Andean western flank. We compare the 3- to 8-year postseismic record of sediment flux to each of the following preseismic periods: (1) all preseismic data, (2) a 3-year period prior to the seismic event, and (3) the driest preseismic periods, as drought conditions prevailed in the postseismic period. Following the earthquake, no increases in suspended sediment flux were observed for moderate to high percentiles of the streamflow distribution (mean, median, and >= 75th percentile). However, more than half of the examined stations showed increased sediment flux during baseflow. By using a Random Forest approach, we evaluate the contributions of seismic intensities, peak ground accelerations, co-seismic landslides, hydroclimatic conditions, topography, lithology, and land cover to explain the observed changes in suspended sediment concentration and fluxes. We find that the best predictors are hillslope gradient, low-vegetation cover, and changes in streamflow discharge. This finding suggests a combined first-order control of topography, land cover, and hydrology on the catchment-wide erosion response. We infer a reduced sediment connectivity due to the postseismic drought, which increased the residence time of sediment detached and remobilized following the Maule earthquake. KW - earthquake KW - suspended sediment KW - Maule megathrust KW - Chile KW - catchment Y1 - 2019 U6 - https://doi.org/10.1029/2018JF004766 SN - 2169-9003 SN - 2169-9011 VL - 124 IS - 6 SP - 1378 EP - 1397 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Jara Muñoz, Julius A1 - Melnick, Daniel A1 - Zambrano, Patricio A1 - Rietbrock, Andreas A1 - Gonzalez, Javiera A1 - Argandona, Boris A1 - Strecker, Manfred T1 - Quantifying offshore fore-arc deformation and splay-fault slip using drowned Pleistocene shorelines, Arauco Bay, Chile JF - Journal of geophysical research : Solid earth N2 - Most of the deformation associated with the seismic cycle in subduction zones occurs offshore and has been therefore difficult to quantify with direct observations at millennial timescales. Here we study millennial deformation associated with an active splay-fault system in the Arauco Bay area off south central Chile. We describe hitherto unrecognized drowned shorelines using high-resolution multibeam bathymetry, geomorphic, sedimentologic, and paleontologic observations and quantify uplift rates using a Landscape Evolution Model. Along a margin-normal profile, uplift rates are 1.3m/ka near the edge of the continental shelf, 1.5m/ka at the emerged Santa Maria Island, -0.1m/ka at the center of the Arauco Bay, and 0.3m/ka in the mainland. The bathymetry images a complex pattern of folds and faults representing the surface expression of the crustal-scale Santa Maria splay-fault system. We modeled surface deformation using two different structural scenarios: deep-reaching normal faults and deep-reaching reverse faults with shallow extensional structures. Our preferred model comprises a blind reverse fault extending from 3km depth down to the plate interface at 16km that slips at a rate between 3.0 and 3.7m/ka. If all the splay-fault slip occurs during every great megathrust earthquake, with a recurrence of similar to 150-200years, the fault would slip similar to 0.5m per event, equivalent to a magnitude similar to 6.4 earthquake. However, if the splay-fault slips only with a megathrust earthquake every similar to 1000years, the fault would slip similar to 3.7m per event, equivalent to a magnitude similar to 7.5 earthquake. KW - splay fault KW - marine terraces KW - Arauco Bay KW - TerraceM KW - fore arc KW - earthquake Y1 - 2017 U6 - https://doi.org/10.1002/2016JB013339 SN - 2169-9313 SN - 2169-9356 VL - 122 SP - 4529 EP - 4558 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Dahm, Torsten A1 - Cesca, Simone A1 - Hainzl, Sebastian A1 - Braun, Thomas A1 - Krüger, Frank T1 - Discrimination between induced, triggered, and natural earthquakes close to hydrocarbon reservoirs: A probabilistic approach based on the modeling of depletion-induced stress changes and seismological source parameters JF - Journal of geophysical research : Solid earth N2 - Earthquakes occurring close to hydrocarbon fields under production are often under critical view of being induced or triggered. However, clear and testable rules to discriminate the different events have rarely been developed and tested. The unresolved scientific problem may lead to lengthy public disputes with unpredictable impact on the local acceptance of the exploitation and field operations. We propose a quantitative approach to discriminate induced, triggered, and natural earthquakes, which is based on testable input parameters. Maxima of occurrence probabilities are compared for the cases under question, and a single probability of being triggered or induced is reported. The uncertainties of earthquake location and other input parameters are considered in terms of the integration over probability density functions. The probability that events have been human triggered/induced is derived from the modeling of Coulomb stress changes and a rate and state-dependent seismicity model. In our case a 3-D boundary element method has been adapted for the nuclei of strain approach to estimate the stress changes outside the reservoir, which are related to pore pressure changes in the field formation. The predicted rate of natural earthquakes is either derived from the background seismicity or, in case of rare events, from an estimate of the tectonic stress rate. Instrumentally derived seismological information on the event location, source mechanism, and the size of the rupture plane is of advantage for the method. If the rupture plane has been estimated, the discrimination between induced or only triggered events is theoretically possible if probability functions are convolved with a rupture fault filter. We apply the approach to three recent main shock events: (1) the M-w 4.3 Ekofisk 2001, North Sea, earthquake close to the Ekofisk oil field; (2) the M-w 4.4 Rotenburg 2004, Northern Germany, earthquake in the vicinity of the Sohlingen gas field; and (3) the M-w 6.1 Emilia 2012, Northern Italy, earthquake in the vicinity of a hydrocarbon reservoir. The three test cases cover the complete range of possible causes: clearly human induced, not even human triggered, and a third case in between both extremes. KW - induced seismicity KW - probabilistic discrimination KW - hydrocarbon field KW - triggered earthquake KW - seismic hazard KW - earthquake Y1 - 2015 U6 - https://doi.org/10.1002/2014JB011778 SN - 2169-9313 SN - 2169-9356 VL - 120 IS - 4 SP - 2491 EP - 2509 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Jara Muñoz, Julius T1 - Quantifying forearc deformation patterns using coastal geomorphic markers T1 - Quantifizierung von Deformationsmustern mit Hilfe von Kustengeomorphologischen Markern BT - A comprehensive study of marine terraces along the 2010 Maule earthquake (M8.8) rupture zone N2 - Rapidly uplifting coastlines are frequently associated with convergent tectonic boundaries, like subduction zones, which are repeatedly breached by giant megathrust earthquakes. The coastal relief along tectonically active realms is shaped by the effect of sea-level variations and heterogeneous patterns of permanent tectonic deformation, which are accumulated through several cycles of megathrust earthquakes. However, the correlation between earthquake deformation patterns and the sustained long-term segmentation of forearcs, particularly in Chile, remains poorly understood. Furthermore, the methods used to estimate permanent deformation from geomorphic markers, like marine terraces, have remained qualitative and are based on unrepeatable methods. This contrasts with the increasing resolution of digital elevation models, such as Light Detection and Ranging (LiDAR) and high-resolution bathymetric surveys. Throughout this thesis I study permanent deformation in a holistic manner: from the methods to assess deformation rates, to the processes involved in its accumulation. My research focuses particularly on two aspects: Developing methodologies to assess permanent deformation using marine terraces, and comparing permanent deformation with seismic cycle deformation patterns under different spatial scales along the M8.8 Maule earthquake (2010) rupture zone. Two methods are developed to determine deformation rates from wave-built and wave-cut terraces respectively. I selected an archetypal example of a wave-built terrace at Santa Maria Island studying its stratigraphy and recognizing sequences of reoccupation events tied with eleven radiocarbon sample ages (14C ages). I developed a method to link patterns of reoccupation with sea-level proxies by iterating relative sea level curves for a range of uplift rates. I find the best fit between relative sea-level and the stratigraphic patterns for an uplift rate of 1.5 +- 0.3 m/ka. A Graphical User Interface named TerraceM® was developed in Matlab®. This novel software tool determines shoreline angles in wave-cut terraces under different geomorphic scenarios. To validate the methods, I select test sites in areas of available high-resolution LiDAR topography along the Maule earthquake rupture zone and in California, USA. The software allows determining the 3D location of the shoreline angle, which is a proxy for the estimation of permanent deformation rates. The method is based on linear interpolations to define the paleo platform and cliff on swath profiles. The shoreline angle is then located by intersecting these interpolations. The accuracy and precision of TerraceM® was tested by comparing its results with previous assessments, and through an experiment with students in a computer lab setting at the University of Potsdam. I combined the methods developed to analyze wave-built and wave-cut terraces to assess regional patterns of permanent deformation along the (2010) Maule earthquake rupture. Wave-built terraces are tied using 12 Infra Red Stimulated luminescence ages (IRSL ages) and shoreline angles in wave-cut terraces are estimated from 170 aligned swath profiles. The comparison of coseismic slip, interseismic coupling, and permanent deformation, leads to three areas of high permanent uplift, terrace warping, and sharp fault offsets. These three areas correlate with regions of high slip and low coupling, as well as with the spatial limit of at least eight historical megathrust ruptures (M8-9.5). I propose that the zones of upwarping at Arauco and Topocalma reflect changes in frictional properties of the megathrust, which result in discrete boundaries for the propagation of mega earthquakes. To explore the application of geomorphic markers and quantitative morphology in offshore areas I performed a local study of patterns of permanent deformation inferred from hitherto unrecognized drowned shorelines at the Arauco Bay, at the southern part of the (2010) Maule earthquake rupture zone. A multidisciplinary approach, including morphometry, sedimentology, paleontology, 3D morphoscopy, and a landscape Evolution Model is used to recognize, map, and assess local rates and patterns of permanent deformation in submarine environments. Permanent deformation patterns are then reproduced using elastic models to assess deformation rates of an active submarine splay fault defined as Santa Maria Fault System. The best fit suggests a reverse structure with a slip rate of 3.7 m/ka for the last 30 ka. The register of land level changes during the earthquake cycle at Santa Maria Island suggest that most of the deformation may be accrued through splay fault reactivation during mega earthquakes, like the (2010) Maule event. Considering a recurrence time of 150 to 200 years, as determined from historical and geological observations, slip between 0.3 and 0.7 m per event would be required to account for the 3.7 m/ka millennial slip rate. However, if the SMFS slips only every ~1000 years, representing a few megathrust earthquakes, then a slip of ~3.5 m per event would be required to account for the long- term rate. Such event would be equivalent to a magnitude ~6.7 earthquake capable to generate a local tsunami. The results of this thesis provide novel and fundamental information regarding the amount of permanent deformation accrued in the crust, and the mechanisms responsible for this accumulation at millennial time-scales along the M8.8 Maule earthquake (2010) rupture zone. Furthermore, the results of this thesis highlight the application of quantitative geomorphology and the use of repeatable methods to determine permanent deformation, improve the accuracy of marine terrace assessments, and estimates of vertical deformation rates in tectonically active coastal areas. This is vital information for adequate coastal-hazard assessments and to anticipate realistic earthquake and tsunami scenarios. N2 - Küstenregionen, die von schnellen Hebungsraten gekennzeichnet sind, werden häufig mit konvergierenden Plattengrenzen assoziiert, beispielsweise mit Subduktionszonen, die wiederholt von Mega-Erdbeben betroffen sind. Das Küstenrelief tektonisch aktiver Gebiete formt sich durch die Effekte von Meeresspiegelschwankungen und die heterogenen Muster der permanenten tektonischen Deformation, die im Zuge von mehreren Erdbebenzyklen entstand. Jedoch die Korrelation zwischen den Deformationsmustern von Erdbeben und der langfristig anhaltenden Segmentation der ‚Forearcs’ ist noch wenig erforscht, insbesondere in Chile. Darüber hinaus sind die Methoden zur Schätzung der permanenten Deformation geomorphologischer Marker, wie beispielsweise mariner Terrassen, lediglich qualitativ oder basieren nicht auf wiederholbaren Messungen. Dies steht im Kontrast zu der mittlerweile höheren Auflösung verfügbarer digitaler Geländemodelle, die z.B. mit LiDAR (Light Detection and Ranging) oder durch hochauflösende bathymetrische Studien gewonnen werden. Im Rahmen dieser Dissertation wird die permanente Deformation einer ganzheitlichen Betrachtung unterzogen, die von den zu Grunde liegenden Methoden zur Bestimmung der Deformationsraten bis hin zu den involvierten Prozessen bei deren Akkumulation reicht. Besonderes Augenmerk wird dabei auf zwei Aspekte gerichtet: Einerseits die Entwicklung von Methoden zur Messung permanenter Deformation anhand von marinen Terrassen, und andererseits der Vergleich zwischen permanenter Deformation und Deformationsmustern des seismischen Zyklus anhand unterschiedlicher räumlicher Ausmaße entlang der Bruchzone des M8.8 Maule (2010) Erdbebens entstanden. Es werden zwei Methoden zur Bestimmung der Deformationsraten von ’wave-built’ und ‘wave-cut’ Terrassen entwickelt. Ein archetypischer Beispiel einer ‘wave-built’ Terrasse wird auf der Insel Santa Maria untersucht. Durch die detaillierte Studie der Sedimentabfolge, werden wiederkehrende Ereignisse der Reaktivierung der Terrasse identifiziert, die anhand von Messungen an Kohlenstoffisotopen (C14- Datierung) von 11 Proben zeitlich eingegrenzt werden. Es wird eine Methode entwickelt, um solche Reaktivierungsmuster mit Meeresspiegelindikatoren in Verbindung zu bringen, wobei die relativen Meeresspiegelkurven mit einer Reihe von Hebungsraten korreliert werden. Die beste Korrelation zwischen Meeresspiegelschwankungen und dem stratigrafischen Muster wird unter Berücksichtigung einer Hebungsrate von 1.5 ± 0.3 m/ka erreicht. Unter Verwendung der Software Matlab® wird die grafische Benutzeroberfläche TerraceM® entwickelt. Diese neue Methode erlaubt die Bestimmung von Küstenwinkels in ‘wave-cut’ Terrassen in verschiedenen geomorphischen Szenarien. Zur Validierung der Methoden werden Regionen entlang der Bruchzone des Maule-Erdbebens und in Kalifornien ausgewählt, für die hochauflösende LiDAR-Daten der Topografie zur Verfügung stehen. Die Software ermöglicht es, den 3D Standort des Küstenwinkels zu bestimmen, der als Proxy für die Schätzung permanenter Deformationsraten fungiert. Dabei nutzt die Methode lineare Interpolation um die Paleo Plattform und die Klippen mit Swath Profilen zu definieren. Im Anschluss wird der Küstenwinkel durch die Überschneidung dieser Interpolationen lokalisiert. Die Genauigkeit und Robustheit von „TerraceM“ wird durch den Vergleich der Ergebnisse mit denen vorangegangener Untersuchungen überprüft. Um regionale Muster permanenter Deformationen entlang der (2010) Maule Bruchzone zu untersuchen werden die Methoden für die ‚wave-built’ und ‚wave-cut’ Terrassen kombiniert. ‘Wave-built’ Terrassen werden mittels 12 Infrarot-Optisch-Stimulierten Lumineszenz (IRSL) Proben datiert, während die Küstenwinkel der ‘wave-cut’ Terrassen anhand von 170 abgestimmten SWATH-Profilen geschätzt wurden. Durch den Vergleich von co-seismischem Versatz, interseismischer Kopplung und permanenter Deformation ergaben sich drei Gebiete mit hoher permanenter Erhebung, Terrassenkrümmung und abruptem, störungsbedingtem Versatz. Diese drei Gebiete korrelieren mit Regionen von hohem Versatz und niedriger Kopplung, sowie mit der räumlichen Begrenzung der Bruchzonen von mindestens acht historischen Mega-Erdbeben. Es wird argumentiert, dass die ansteigenden Zonen bei Arauco und Topocalma Änderungen der Reibungseigenschaften von Mega-Erdbeben widerspiegeln, was diskrete Grenzen für die Ausbreitung von Mega-Erdbeben zur Folge hat. Ein weiterer Beitrag dieser Dissertation ist die lokale Untersuchung permanenter Deformationsmuster von bislang unbekannten überflutete Küstenlinien in der Arauco-Bucht bei der Santa Maria Insel, die ebenfalls vom Maule Erdbeben betroffen wurde. Ein multidisziplinärer Ansatz wird verwendet, um lokale Muster permanenter Deformation in submarinen Umgebungen zu erkennen, abzubilden und zu untersuchen. Dabei kommen Morphometrie, Sedimentologie, Paläontologie, 3D Morphoskopie und ein Landschafts-Entwicklungs-Model zum Einsatz. Permanente Deformationsmuster werden anhand eines elastischen Models nachgebildet und bestimmen die Deformationsraten einer aktiven, submarinen Aussenstörung (‘splay fault’), die als Santa Maria Störungszone definiert wird und durch eine Versatzrate von 3.7 m/ka für die letzten 30 ka charakterisiert ist. Die Aufzeichnungen zu Veränderungen der Elevation der Erdoberfläche während des Santa Maria Erdbebenzyklus deuten darauf hin, dass der wesentliche Teil der Deformation auf die Reaktivierung einer ‘Splay Fault’ während Mega-Erdbeben (wie z.B. das Maule (2010) Erdbeben) zurückzuführen ist. Allerdings die Sismizität in geringer Tiefe, die während der letzten zehn Jahre vor dem Maule-Erdbeben registriert wurde, deutet auf vorübergehende Störungsaktivität in der interseismischen Phase hin. Die Ergebnisse dieser Dissertation liefern neuartige und fundamentale Daten bezüglich der Menge und Mechanismen der Akkumulierung permanenter Deformation in der Erdkruste über mehrere tausend Jahre hinweg in der Region des M8.8 Maule Erdbebens (2010). Die in dieser Dissertation präsentierten neuen Methoden zur Charakterisierung permanenter Deformation mithilfe von geomorpologischen Küstenmarkern bieten einen breiteren quantitativen Ansatz zur Interpretation aktiver Deformation dar und können somit zu einem besseren Verständnis der Geologie in tektonisch aktiven Küstengebieten beitragen. N2 - Las regiones costeras tectónicamente activas están generalmente asociadas con zonas de subducción, las cuales son recurrentemente afectadas por megaterremotos de gran magnitud. El relieve costero es modelado por el efecto combinado de variaciones eustáticas y patrones de alzamiento tectónico heterogéneos, los cuales son acumulados luego de varios ciclos de megaterremotos. Sin embargo, la correlación entre los patrones de deformación asociados a megaterremotos y la persistente segmentación de las zonas de antearco, especialmente en Chile, no han sido aún entendidos del todo. Por otra parte, los métodos normalmente usados para estimar deformación permanente y basados en marcadores geomorfológicos, como las terrazas marinas, han permanecido basados en aproximaciones cualitativas y no repetibles. Esta situación es contrastante con el rápido avance de modelos de elevación digital de alta resolución como Light Detection and Ranging (LiDAR) y batimetrías de última generación. A lo largo de esta tesis me enfoco en estudiar la deformación permanente desde un punto de vista holístico: Desde los métodos usados para medir deformación permanente, hasta el estudio de los procesos responsables de su acumulación en la corteza. Mi investigación se enfoca específicamente en dos aspectos: Desarrollar nuevos métodos para medir deformación permanente usando terrazas marinas y comparar la magnitud de la deformación permanente con diferentes escalas temporales de deformación registrada durante las distintas fases del ciclo sísmico a lo largo de la zona de ruptura del (M8.8) Terremoto Maule 2010. En esta tesis he desarrollado dos métodos para determinar tasas de deformación en terrazas marinas del tipo wave-built y wave-cut. Para el primero, me enfoco en estudiar un ejemplo arquetípico de terraza marina tipo wave-built en Isla Santa María, mapeando su estratigrafía en detalle y reconociendo patrones de eventos de reocupación datados mediante once edades de radiocarbono (14C). He desarrollado un método para vincular los patrones de reocupación con variaciones del nivel del mar mediante la iteración de curvas relativas del nivel del mar para un rango de tasas de alzamiento. El mejor ajuste entre nivel del mar relativo y los patrones estratigráficos señala una tasa de alzamiento de 1.5 ± 0.3 m/ka. El segundo método es un software de interfaz gráfica llamado TerraceM® y desarrollado usando Matlab®. Esta novedosa herramienta permite determinar el shoreline-angle en terrazas del tipo wave-cut para diferentes escenarios geomorfológicos. Para validar estos métodos he seleccionado zonas de prueba con disponibilidad de topografía LiDAR a lo largo de la zona de ruptura del Terremoto Maule (2010), en Chile, y en California, USA. TerraceM permite determinar la ubicación tridimensional del shoreline-angle, el cual es usado para calcular tasas de deformación permanente. El shoreline-angle es localizado mediante la intersección de interpolaciones lineales, las que son usadas para definir la paleo plataforma y el paleo acantilado en perfiles topográficos swath. La precisión y exactitud de las mediciones con TerraceM es testeada comprando los resultados con mapeos previos y mediante un experimento de respetabilidad con estudiantes en el laboratorio de computación de la Universidad de Potsdam. He combinado los métodos creados anteriormente, para analizar terrazas del tipo wave-cut y wave-built, con el objetivo de medir la deformación permanente acumulada a lo largo de la zona de ruptura del Terremoto Maule (2010). Las terrazas tipo wave-built fueron datadas usando doce edades de Luminiscencia Estimulada por Luz Infrarroja (IRSL), las terrazas wave-cut fueron estudiadas utilizando 170 perfiles swaths alineados. Mediante la comparación de deslizamiento co-sísmico, acople intersísmico y tasas de deformación permanente he detectado tres áreas de alto alzamiento tectónico, plegamiento de terrazas marinas y zonas desplazadas por fallas activas. Estas tres áreas coinciden con zonas de alto deslizamiento cosísmico y acople, y con el limite espacial de al menos ocho megaterremotos históricos (M8-9.5). Propongo que las zonas de plegamiento de terrazas marinas en Arauco y Topocalma reflejan cambios en fricción de la zona de interplaca, que da como resultado la formación de barreras discretas para la propagación de megaterremotos. Con el objetivo de explorar la aplicación de geomorfología cuantitativa y marcadores geomorfológicos en ambientes submarinos, he desarrollado un estudio local de para determinar tasas de alzamiento tectónico utilizando líneas de costa sumergidas en el Golfo de Arauco, en la parte sur de la zona de ruptura del Terremoto Maule (2010). Utilizo una metodología multidisciplinaria que incluye: morfometría, sedimentología, paleontología, morfoscopía 3D y un modelo de evolución del relieve, con el objetivo de reconocer, cartografiar, y medir tasas y patrones de deformación permanente en ambientes submarinos. Luego, se utilizó un modelo elástico para reproducir los patrones de deformación permanente de una falla ramificada (splay- fault) definida como Sistema de Falla Santa María. El mejor modelo sugiere una estructura inversa con una tasa de deslizamiento de 3.7 m/ka durante los últimos ~30 ka. El registro de cambios del nivel del terreno durante el ciclo sísmico en Isla Santa María sugiere que la mayor parte de la deformación es acumulada a través de la reactivación de fallas ramificadas durante megaterremotos como el Maule (2010). Si consideramos 150 a 200 años como tiempo de recurrencia de estos mega eventos, un deslizamiento de entre 0.3 y 0.7 metros por evento sería necesario para equilibrar la tasa de deslizamiento de 3.7 m/ka. Sin embargo, si la falla se deslizara cada ~1000 años, sugiriendo que solo algunos terremotos podrían reactivarla, un deslizamiento de ~3.5 metros por evento serían necesarios para equilibrar la tasa de deslizamiento. Tal evento sería equivalente a un terremoto magnitud ~6.7 que sería capaz de producir un tsunami local. Los resultados de esta tesis entregan información nueva y fundamental acerca de la cantidad de deformación permanente y los posibles mecanismos asociados a esta deformación a escala de miles de años a lo largo de la zona de ruptura del M8.8 Terremoto Maule (2010). Además, los resultados de esta tesis destacan la aplicación de métodos de geomorfología cuantitativa, incluyendo nuevas herramientas computacionales como TerraceM®, el cual ayudará a expandir el uso de la geomorfología cuantitativa y métodos repetibles, además de mejorar la precisión y exactitud de estimaciones de deformación permanente en zonas costeras. Esta información es imprescindible para una adecuada ponderación de riesgos geológicos en zonas costeras y para anticipar escenarios de terremotos y tsunamis realísticos. KW - marine terraces KW - geomorphology KW - earthquake KW - subduction zone KW - permanent deformation KW - shorelines KW - Erdbeben KW - Geomorphologie KW - marine Terrassen KW - permanente Verformung KW - Küstenlinien KW - Subduktionszone Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-102652 ER -