TY - JOUR A1 - Qin, Qing A1 - Oschatz, Martin T1 - Overcoming chemical inertness under ambient conditions BT - a critical view on recent developments in Ammonia synthesis via electrochemical N-2 reduction by asking five questions JF - ChemElectroChem N2 - Ammonia (NH3) synthesis by the electrochemical N-2 reduction reaction (NRR) is increasingly studied and proposed as an alternative process to overcome the disadvantages of Haber-Bosch synthesis by a more energy-efficient, carbon-free, delocalized, and sustainable process. An ever-increasing number of scientists are working on the improvement of the faradaic efficiency (FE) and NH3 production rate by developing novel catalysts, electrolyte concepts, and/or by contributing theoretical studies. The present Minireview provides a critical view on the interplay of different crucial aspects in NRR from the electrolyte, over the mechanism of catalytic activation of N-2, to the full electrochemical cell. Five critical questions are asked, discussed, and answered, each coupled with a summary of recent developments in the respective field. This article is not supposed to be a complete summary of recent research about NRR but provides a rather critical personal view on the field. It is the major aim to give an overview over crucial influences on different length scales to shine light on the sweet spots into which room for revolutionary instead of incremental improvements may exist. KW - N-2 reduction KW - ammonia synthesis KW - catalysis KW - catalysts KW - electrolytes Y1 - 2022 U6 - https://doi.org/10.1002/celc.201901970 SN - 2196-0216 VL - 7 IS - 4 SP - 878 EP - 889 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Qin, Qing A1 - Zhao, Yun A1 - Schmallegger, Max A1 - Heil, Tobias A1 - Schmidt, Johannes A1 - Walczak, Ralf A1 - Gescheidt-Demner, Georg A1 - Jiao, Haijun A1 - Oschatz, Martin T1 - Enhanced Electrocatalytic N-2 Reduction via Partial Anion Substitution in Titanium Oxide-Carbon Composites JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - The electrochemical conversion of N-2 at ambient conditions using renewably generated electricity is an attractive approach for sustainable ammonia (NH3) production. Considering the chemical inertness of N-2, rational design of efficient and stable catalysts is required. Therefore, in this work, it is demonstrated that a C-doped TiO2/C (C-TixOy/C) material derived from the metal-organic framework (MOF) MIL-125(Ti) can achieve a high Faradaic efficiency (FE) of 17.8 %, which even surpasses most of the established noble metal-based catalysts. On the basis of the experimental results and theoretical calculations, the remarkable properties of the catalysts can be attributed to the doping of carbon atoms into oxygen vacancies (OVs) and the formation of Ti-C bonds in C-TixOy. This binding motive is found to be energetically more favorable for N-2 activation compared to the non-substituted OVs in TiO2. This work elucidates that electrochemical N-2 reduction reaction (NRR) performance can be largely improved by creating catalytically active centers through rational substitution of anions into metal oxides. KW - ammonia synthesis KW - anion substitution KW - MOF-derived catalysts KW - N-2 fixation KW - non-noble metal catalysts Y1 - 2019 U6 - https://doi.org/10.1002/anie.201906056 SN - 1433-7851 SN - 1521-3773 VL - 58 IS - 37 SP - 13101 EP - 13106 PB - Wiley-VCH CY - Weinheim ER -