TY - JOUR A1 - Eisold, Ursula A1 - Kupstat, Annette A1 - Klier, Dennis Tobias A1 - Primus, Philipp-A. A1 - Pschenitza, Michael A1 - Niessner, Reinhard A1 - Knopp, Dietmar A1 - Kumke, Michael Uwe T1 - Probing the physicochemical interactions of 3-hydroxy-benzo[a]pyrene with different monoclonal and recombinant antibodies by use of fluorescence line-narrowing spectroscopy JF - Analytical & bioanalytical chemistry N2 - Characterization of interactions between antigens and antibodies is of utmost importance both for fundamental understanding of the binding and for development of advanced clinical diagnostics. Here, fluorescence line-narrowing (FLN) spectroscopy was used to study physicochemical interactions between 3-hydroxybenzo[a]pyrene (3OH-BaP, as antigen) and a variety of solvent matrices (as model systems) or anti-polycyclic aromatic hydrocarbon antibodies (anti-PAH). We focused the studies on the specific physicochemical interactions between 3OH-BaP and different, previously obtained, monoclonal and recombinant anti-PAH antibodies. Control experiments performed with non-binding monoclonal antibodies and bovine serum albumin (BSA) indicated that nonspecific interactions did not affect the FLN spectrum of 3OH-BaP. The spectral positions and relative intensities of the bands in the FLN spectra are highly dependent on the molecular environment of the 3OH-BaP. The FLN bands correlate with different vibrational modes of 3OH-BaP which are affected by interactions with the molecular environment (pi-pi interactions, H-bonding, or van-der-Waals forces). Although the analyte (3OH-BaP) was the same for all the antibodies investigated, different binding interactions could be identified from the FLN spectra on the basis of structural flexibility and conformational multiplicity of the antibodies' paratopes. KW - FLNS KW - Antibody KW - Paratope KW - Hapten KW - Polycyclic aromatic hydrocarbons Y1 - 2014 U6 - https://doi.org/10.1007/s00216-013-7584-8 SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 14 SP - 3387 EP - 3394 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Primus, Philipp-A. A1 - Kumke, Michael Uwe T1 - Flash photolysis study of complexes between salicylic acid and lanthanide ions in water JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - In the natural environment humic substances (HS) represent a major factor determining the speciation of metal ions, e.g., in the context of radionuclide migration. Here, due to their intrinsic sensitivity and selectivity, spectroscopic methods are often applied, requiring a fundamental understanding of the photophysical processes present in such HS-metal complexes. Complexes with different metal ions were studied using 2-hydroxybenzoic acid (2HB) as a model compound representing an important part of the chelating substructures in HS. In flash photolysis experiments under direct excitation of 2HB in the absence and the presence of different lanthanide ions, the generation and the decay of the 2HB triplet state, of the phenoxy radical, and of the solvated electron were monitored. Depending on the lanthanide ion different intracomplex processes were observed for these transient species including energy migration to and photoreduction of the lanthanide ion. The complexity of the intracomplex photophysical processes even for small molecules such as 2HB underlines the necessity to step-by-step approach the photochemical reactivity of HS by using suitable model compounds. Y1 - 2012 U6 - https://doi.org/10.1021/jp2043575 SN - 1089-5639 VL - 116 IS - 4 SP - 1176 EP - 1182 PB - American Chemical Society CY - Washington ER -