TY - JOUR A1 - Mink, Albert A1 - McHardy, Christopher A1 - Bressel, Lena A1 - Rauh, Cornelia A1 - Krause, Mathias J. T1 - Radiative transfer lattice Boltzmann methods BT - 3D models and their performance in different regimes of radiative transfer JF - Journal of quantitative spectroscopy & radiative transfer N2 - The numerical prediction of radiative transport is a challenging task due to the complexity of the radiative transport equation. We apply the lattice Boltzmann method (LBM), originally developed for fluid flow problems, to solve the radiative transport in volume. One model (meso RTLBM) is derived directly from a discretization of the radiative transport equation, yielding in a precise but numerical costly scheme. The second model (macro RTLBM) solves the Helmholtz equation, which is a proper approximation for highly scattering volumes. Both numerical algorithms are validated against Monte-Carlo data for a set of 35 optical parameters, which correspond to radiative transport ranging from ballistic to diffuse regimes. Together with a set of four benchmark simulations, the comprehensive validation concludes the overall quality and detects asymptotic trends for radiative transport LBM. Furthermore, an accuracy map is presented, which summarizes the error for all parameters. This graph allows to determine the validity range for both radiative transport LBM at a glance. Finally, comprehensive guidelines are formulated to facilitate the choice of the radiative transport LBM model. KW - Radiative transport KW - Lattice Boltzmann methods KW - Monte-Carlo KW - Analysis scattering kernel KW - Optical parameter set Y1 - 2019 U6 - https://doi.org/10.1016/j.jqsrt.2019.106810 SN - 0022-4073 SN - 1879-1352 VL - 243 PB - Pergamon Press CY - Oxford ER -