TY - JOUR A1 - Wang, Ming A1 - White, Neil A1 - Grimm, Volker A1 - Hofman, Helen A1 - Doley, David A1 - Thorp, Grant A1 - Cribb, Bronwen A1 - Wherritt, Ella A1 - Han, Liqi A1 - Wilkie, John A1 - Hanan, Jim T1 - Pattern-oriented modelling as a novel way to verify and validate functional-structural plant models BT - a demonstration with the annual growth module of avocado JF - Annals of botany N2 - Background and Aims Functional-structural plant (FSP) models have been widely used to understand the complex interactions between plant architecture and underlying developmental mechanisms. However, to obtain evidence that a model captures these mechanisms correctly, a clear distinction must be made between model outputs used for calibration and thus verification, and outputs used for validation. In pattern-oriented modelling (POM), multiple verification patterns are used as filters for rejecting unrealistic model structures and parameter combinations, while a second, independent set of patterns is used for validation. Key Results After calibration, our model simultaneously reproduced multiple observed architectural patterns. The model then successfully predicted, without further calibration, the validation patterns. The model supports the hypothesis that carbon allocation can be modelled as being dependent on current organ biomass and sink strength of each organ type, and also predicted the observed developmental timing of the leaf sink-source transition stage. KW - Pattern-oriented modelling KW - agent-based model KW - individual-based model KW - functional-structural plant model KW - model analysis KW - model verification KW - model validation KW - ODD (Overview, Design concepts, Details) protocol KW - Persea americana KW - plant architecture KW - carbon allocation KW - L-systems Y1 - 2018 U6 - https://doi.org/10.1093/aob/mcx187 SN - 0305-7364 SN - 1095-8290 VL - 121 IS - 5 SP - 941 EP - 959 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Crawford, Michael A1 - Jeltsch, Florian A1 - May, Felix A1 - Grimm, Volker A1 - Schlägel, Ulrike E. T1 - Intraspecific trait variation increases species diversity in a trait-based grassland model JF - Oikos N2 - Intraspecific trait variation (ITV) is thought to play a significant role in community assembly, but the magnitude and direction of its influence are not well understood. Although it may be critical to better explain population persistence, species interactions, and therefore biodiversity patterns, manipulating ITV in experiments is challenging. We therefore incorporated ITV into a trait‐ and individual‐based model of grassland community assembly by adding variation to the plants’ functional traits, which then drive life‐history tradeoffs. Varying the amount of ITV in the simulation, we examine its influence on pairwise‐coexistence and then on the species diversity in communities of different initial sizes. We find that ITV increases the ability of the weakest species to invade most, but that this effect does not scale to the community level, where the primary effect of ITV is to increase the persistence and abundance of the competitively‐average species. Diversity of the initial community is also of critical importance in determining ITV's efficacy; above a threshold of interspecific diversity, ITV does not increase diversity further. For communities below this threshold, ITV mainly helps to increase diversity in those communities that would otherwise be low‐diversity. These findings suggest that ITV actively maintains diversity by helping the species on the margins of persistence, but mostly in habitats of relatively low alpha and beta diversity. KW - community assembly KW - individual-based model KW - intraspecific trait variation Y1 - 2018 U6 - https://doi.org/10.1111/oik.05567 SN - 0030-1299 SN - 1600-0706 VL - 128 IS - 3 SP - 441 EP - 455 PB - Wiley CY - Hoboken ER -