TY - JOUR A1 - Broeker, Nina K. A1 - Roske, Yvette A1 - Valleriani, Angelo A1 - Stephan, Mareike Sophia A1 - Andres, Dorothee A1 - Koetz, Joachim A1 - Heinemann, Udo A1 - Barbirz, Stefanie T1 - Time-resolved DNA release from an O-antigen-specific Salmonella bacteriophage with a contractile tail JF - The journal of biological chemistry N2 - Myoviruses, bacteriophages with T4-like architecture, must contract their tails prior to DNA release. However, quantitative kinetic data on myovirus particle opening are lacking, although they are promising tools in bacteriophage-based antimicrobial strategies directed against Gram-negative hosts. For the first time, we show time-resolved DNA ejection from a bacteriophage with a contractile tail, the multi-O-antigen-specific Salmonella myovirus Det7. DNA release from Det7 was triggered by lipopolysaccharide (LPS) O-antigen receptors and notably slower than in noncontractile-tailed siphoviruses. Det7 showed two individual kinetic steps for tail contraction and particle opening. Our in vitro studies showed that highly specialized tailspike proteins (TSPs) are necessary to attach the particle to LPS. A P22-like TSP confers specificity for the Salmonella Typhimurium O-antigen. Moreover, crystal structure analysis at 1.63 angstrom resolution confirmed that Det7 recognized the Salmonella Anatum O-antigen via an E15-like TSP, DettilonTSP. DNA ejection triggered by LPS from either host showed similar velocities, so particle opening is thus a process independent of O-antigen composition and the recognizing TSP. In Det7, at permissive temperatures TSPs mediate O-antigen cleavage and couple cell surface binding with DNA ejection, but no irreversible adsorption occurred at low temperatures. This finding was in contrast to short-tailed Salmonella podoviruses, illustrating that tailed phages use common particle-opening mechanisms but have specialized into different infection niches. KW - bacteriophage KW - lipopolysaccharide (YLPS) KW - structural biology KW - DNA viruses KW - glycobiology KW - fluorescence KW - Salmonella enterica KW - contractile tail KW - DNA ejection KW - O-antigen specificity KW - Salmonella myovirus KW - tailspike protein KW - molecular machine Y1 - 2019 U6 - https://doi.org/10.1074/jbc.RA119.008133 SN - 1083-351X VL - 294 IS - 31 SP - 11751 EP - 11761 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER - TY - JOUR A1 - Kartal, Oender A1 - Mahlow, Sebastian A1 - Skupin, Alexander A1 - Ebenhoeh, Oliver T1 - Carbohydrate-active enzymes exemplify entropic principles in metabolism JF - Molecular systems biology N2 - Glycans comprise ubiquitous and essential biopolymers, which usually occur as highly diverse mixtures. The myriad different structures are generated by a limited number of carbohydrate-active enzymes (CAZymes), which are unusual in that they catalyze multiple reactions by being relatively unspecific with respect to substrate size. Existing experimental and theoretical descriptions of CAZyme-mediated reaction systems neither comprehensively explain observed action patterns nor suggest biological functions of polydisperse pools in metabolism. Here, we overcome these limitations with a novel theoretical description of this important class of biological systems in which the mixing entropy of polydisperse pools emerges as an important system variable. In vitro assays of three CAZymes essential for central carbon metabolism confirm the power of our approach to predict equilibrium distributions and non-equilibrium dynamics. A computational study of the turnover of the soluble heteroglycan pool exemplifies how entropy-driven reactions establish a metabolic buffer in vivo that attenuates fluctuations in carbohydrate availability. We argue that this interplay between energy- and entropy-driven processes represents an important regulatory design principle of metabolic systems. KW - energy metabolism KW - entropic enzymes KW - glycobiology KW - metabolic regulation Y1 - 2011 U6 - https://doi.org/10.1038/msb.2011.76 SN - 1744-4292 VL - 7 IS - 10 PB - Nature Publ. Group CY - New York ER -