TY - JOUR A1 - Stech, Marlitt A1 - Merk, Helmut A1 - Schenk, Jörg A. A1 - Stöcklein, Walter F. M. A1 - Wüstenhagen, Doreen Anja A1 - Micheel, Burkhard A1 - Duschl, Claus A1 - Bier, Frank Fabian A1 - Kubick, Stefan T1 - Production of functional antibody fragments in a vesicle-based eukaryotic cell-free translation system JF - Journal of biotechnology N2 - Cell-free protein synthesis is of increasing interest for the rapid and high-throughput synthesis of many proteins, in particular also antibody fragments. In this study, we present a novel strategy for the production of single chain antibody fragments (scFv) in a eukaryotic in vitro translation system. This strategy comprises the cell-free expression, isolation and label-free interaction analysis of a model antibody fragment synthesized in two differently prepared insect cell lysates. These lysates contain translocationally active microsomal structures derived from the endoplasmic reticulum (ER), allowing for posttranslational modifications of cell-free synthesized proteins. Both types of these insect cell lysates enable the synthesis and translocation of scFv into ER-derived vesicles. However, only the one that has a specifically adapted redox potential yields functional active antibody fragments. We have developed a new methodology for the isolation of functional target proteins based on the translocation of cell-free produced scFv into microsomal structures and subsequent collection of protein-enriched vesicles. Antibody fragments that have been released from these vesicles are shown to be well suited for label-free binding studies. Altogether, these results show the potential of insect cell lysates for the production, purification and selection of antibody fragments in an easy-to-handle and time-saving manner. KW - Cell-free KW - In vitro translation KW - Single chain antibody (scFv) KW - Insect lysate KW - Surface plasmon resonance Y1 - 2012 U6 - https://doi.org/10.1016/j.jbiotec.2012.08.020 SN - 0168-1656 VL - 164 IS - 2 SP - 220 EP - 231 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hüttl, Christine A1 - Hettrich, Cornelia A1 - Miller, Reinhard A1 - Paulke, Bernd-Reiner A1 - Henklein, Petra A1 - Rawel, Harshadrai Manilal A1 - Bier, Frank Fabian T1 - Self-assembled peptide amphiphiles function as multivalent binder with increased hemagglutinin affinity JF - BMC biotechnology N2 - Background: A promising way in diagnostic and therapeutic applications is the development of peptide amphiphiles (PAs). Peptides with a palmitic acid alkylchain were designed and characterized to study the effect of the structure modifications on self-assembling capabilities and the multiple binding capacity to hemagglutinin (HA), the surface protein of influenza virus type A. The peptide amphiphiles consists of a hydrophilic headgroup with a biological functionality of the peptide sequence and a chemically conjugated hydrophobic tail. In solution they self-assemble easily to micelles with a hydrophobic core surrounded by a closely packed peptide-shell. Results: In this study the effect of a multiple peptide binding partner to the receptor binding site of HA could be determined with surface plasmon resonance measurements. The applied modification of the peptides causes signal amplification in relationship to the unmodified peptide wherein the high constant specificity persists. The molecular assembly of the peptides was characterized by the determination of critical micelle concentration (CMC) with concentration of 10(-5) M and the colloidal size distribution. Conclusion: The modification of the physico-chemical parameters by producing peptide amphiphiles form monomeric structures which enhances the binding affinity and allows a better examination of the interaction with the virus surface protein hemagglutinin. KW - CMC KW - Influenza virus detection KW - Micelle KW - PAs KW - Surface plasmon resonance Y1 - 2013 U6 - https://doi.org/10.1186/1472-6750-13-51 SN - 1472-6750 VL - 13 IS - 22 PB - BioMed Central CY - London ER -