TY - JOUR A1 - Gräf, Ralph A1 - Batsios, Petros A1 - Meyer, Irene T1 - Evolution of centrosomes and the nuclear lamina: Amoebozoan assets JF - European journal of cell biology N2 - The current eukaryotic tree of life groups most eukaryotes into one of five supergroups, the Opisthokonta, Amoebozoa, Archaeplastida, Excavata and SAR (Stramenopile, Alveolata, Rhizaria). Molecular and comparative morphological analyses revealed that the last eukaryotic common ancestor (LECA) already contained a rather sophisticated equipment of organelles including a mitochondrion, an endomembrane system, a nucleus with a lamina, a microtubule-organizing center (MTOC), and a flagellar apparatus. Recent studies of MTOCs, basal bodies/centrioles, and nuclear envelope organization of organisms in different supergroups have clarified our picture of how the nucleus and MTOCs co-evolved from LECA to extant eukaryotes. In this review we summarize these findings with special emphasis on valuable contributions of research on a lamin-like protein, nuclear envelope proteins, and the MTOC in the amoebozoan model organism Dictyostelium discoideum. (C) 2015 Elsevier GmbH. All rights reserved. KW - LINC complex KW - Sun1 KW - Nuclear lamina KW - Lamin KW - Nuclear envelope KW - Centrosome KW - Basal body KW - Centriole KW - LEM-domain Y1 - 2015 U6 - https://doi.org/10.1016/j.ejcb.2015.04.004 SN - 0171-9335 SN - 1618-1298 VL - 94 IS - 6 SP - 249 EP - 256 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Schweigel, Ulrike A1 - Batsios, Petros A1 - Müller-Taubenberger, Annette A1 - Gräf, Ralph A1 - Grafe, Marianne T1 - Dictyostelium spastin is involved in nuclear envelope dynamics during semi-closed mitosis JF - Nucleus N2 - Dictyostelium amoebae perform a semi-closed mitosis, in which the nuclear envelope is fenestrated at the insertion sites of the mitotic centrosomes and around the central spindle during karyokinesis. During late telophase the centrosome relocates to the cytoplasmic side of the nucleus, the central spindle disassembles and the nuclear fenestrae become closed. Our data indicate that Dictyostelium spastin (DdSpastin) is a microtubule-binding and severing type I membrane protein that plays a role in this process. Its mitotic localization is in agreement with a requirement for the removal of microtubules that would hinder closure of the fenestrae. Furthermore, DdSpastin interacts with the HeH/ LEM-family protein Src1 in BioID analyses as well as the inner nuclear membrane protein Sun1, and shows subcellular co-localizations with Src1, Sun1, the ESCRT component CHMP7 and the IST1-like protein filactin, suggesting that the principal pathway of mitotic nuclear envelope remodeling is conserved between animals and Dictyostelium amoebae. KW - Spastin KW - LEM-domain KW - ESCRT KW - sun1 KW - dictyostelium KW - nuclear envelope KW - mitosis Y1 - 2022 U6 - https://doi.org/10.1080/19491034.2022.2047289 SN - 1949-1034 SN - 1949-1042 VL - 13 IS - 1 SP - 144 EP - 154 PB - Taylor & Francis Group CY - Philadelphia ER -