TY - GEN A1 - Crawford, Tim A1 - Karamat, Fazeelat A1 - Lehotai, Nóra A1 - Rentoft, Matilda A1 - Blomberg, Jeanette A1 - Strand, Åsa A1 - Björklund, Stefan T1 - Specific functions for mediator complex subunits from different modules in the transcriptional response of arabidopsis thaliana to abiotic stress T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Adverse environmental conditions are detrimental to plant growth and development. Acclimation to abiotic stress conditions involves activation of signaling pathways which often results in changes in gene expression via networks of transcription factors (TFs). Mediator is a highly conserved co-regulator complex and an essential component of the transcriptional machinery in eukaryotes. Some Mediator subunits have been implicated in stress-responsive signaling pathways; however, much remains unknown regarding the role of plant Mediator in abiotic stress responses. Here, we use RNA-seq to analyze the transcriptional response of Arabidopsis thaliana to heat, cold and salt stress conditions. We identify a set of common abiotic stress regulons and describe the sequential and combinatorial nature of TFs involved in their transcriptional regulation. Furthermore, we identify stress-specific roles for the Mediator subunits MED9, MED16, MED18 and CDK8, and putative TFs connecting them to different stress signaling pathways. Our data also indicate different modes of action for subunits or modules of Mediator at the same gene loci, including a co-repressor function for MED16 prior to stress. These results illuminate a poorly understood but important player in the transcriptional response of plants to abiotic stress and identify target genes and mechanisms as a prelude to further biochemical characterization. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1399 KW - regulate gene expression KW - signal transduction KW - circadian clock KW - plant Mediator KW - salicylic-acid KW - activation KW - jasmonate KW - network KW - defense KW - MED16 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-513666 SN - 1866-8372 IS - 1 ER - TY - GEN A1 - Vogt, Julia H. M. A1 - Schippers, Jos H. M. T1 - Setting the PAS, the role of circadian PAS domain proteins during environmental adaptation in plants T2 - Frontiers in plant science N2 - The per-ARNT-sim (PAS) domain represents an ancient protein module that can be found across all kingdoms of life. The domain functions as a sensing unit for a diverse array of signals, including molecular oxygen, small metabolites, and light. In plants, several PAS domain-containing proteins form an integral part of the circadian clock and regulate responses to environmental change. Moreover, these proteins function in pathways that control development and plant stress adaptation responses. Here, we discuss the role of PAS domain-containing proteins in anticipation, and adaptation to environmental changes in plants. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 430 KW - PAS domain KW - circadian clock KW - signal transduction KW - environmental stress response KW - growth adaptation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406492 ER - TY - GEN A1 - Petrov, Veselin A1 - Hille, Jacques A1 - Müller-Röber, Bernd A1 - Gechev, Tsanko S. T1 - ROS-mediated abiotic stress-induced programmed cell death in plants T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - During the course of their ontogenesis plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD). This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS) which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 425 KW - abiotic stress KW - programmed cell death KW - reactive oxygen species KW - signal transduction KW - stress adaptation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406481 IS - 425 ER - TY - THES A1 - Strohm, Daniela T1 - Modulation der Insulinsignalgebung durch Prostaglandin E2 und Endocannabinoide T1 - Modulation of insulin signaling by prostaglandin E2 and endocannabinoids N2 - Die adipositasbedingte Insulinresistenz geht mit einer unterschwelligen Entzündungsreaktion einher. Als Antwort auf dieses Entzündungsgeschehen wird PGE2 unter anderem von Kupffer Zellen der Leber freigesetzt und kann seine Wirkung über vier PGE2-Rezeptorsubtypen (EP1-EP4) vermitteln. In vorangegangenen Arbeiten konnte gezeigt werden, dass PGE2 in Rattenhepatozyten über den EP3 R ERK1/2-abhängig die intrazelluläre Weiterleitung des Insulinsignals hemmt. Über die Modulation der Insulinrezeptorsignalkette durch andere EP-Rezeptoren war bisher nichts bekannt. Daher sollte in stabil transfizierten Zelllinien, die jeweils nur einen der vier EP-Rezeptorsubtypen exprimierten, der Einfluss von PGE2 auf die Insulinrezeptorsignalkette untersucht werden. Es wurden HepG2-Zellen, die keinen funktionalen EP-Rezeptor aufwiesen, sowie HepG2-Zellen, die stabil den EP1-R (HepG2-EP1), den EP3β-R (HepG2 EP3β) oder den EP4-R (HepG2 EP4) exprimierten, sowie die humane fötale Hepatozytenzelllinie, Fh hTert, die den EP2- und den EP4-R exprimierte, für die Untersuchungen verwendet. Die Zellen wurden für 330 min mit PGE2 (10 µM) vorinkubiert, um die pathophysiologische Situation nachzustellen und anschließend mit Insulin (10 nM) für 15 min stimuliert. Die insulinabhängige Akt- und ERK1/2-Phosphorylierung wurde im Western-Blot bestimmt. In allen Hepatomzelllinien die EP-R exprimierten, nicht aber in der Zelllinie, die keinen EP R exprimierte, hemmte PGE2 die insulinstimulierte Akt-Phosphorylierung. In allen drei stabil transfizierten Zelllinien, nicht jedoch in den Fh-hTert-Zellen, steigerte PGE2 die basale und insulinstimulierte Phosphorylierung der Serin/Threoninkinase ERK1/2. In den HepG2 EP1- und den HepG2-EP3β-Zellen steigerte PGE2 mutmaßlich über die ERK1/2-Aktivierung die Serinphosphorylierung des IRS, welche die Weiterleitung des Insulinsignals blockiert. Die Hemmung der Aktivierung von ERK1/2 hob in EP3 R-exprimierenden Zellen die Abschwächung der Insulinsignalübertragung teilweise auf. In diesen Zellen scheint die ERK1/2-Aktivierung die größte Bedeutung für die Hemmung der insulinstimulierten Akt-Phosphorylierung zu haben. Da durch die Hemmstoffe die PGE2-abhängige Modulation nicht vollständig aufgehoben wurde, scheinen darüber hinaus aber noch andere Mechanismen zur Modulation beizutragen. In den Fh hTert-Zellen wurde die Insulinrezeptorsignalkette offensichtlich über einen ERK1/2-unabhängigen, bisher nicht identifizierten Weg unterbrochen. Eine gesteigerte PGE2-Bildung im Rahmen der Adipositas ist nicht auf die peripheren Gewebe beschränkt. Auch im Hypothalamus können bei Adipositas Zeichen einer Entzündung nachgewiesen werden, die mit einer gesteigerten PGE2-Bildung einhergehen. Daher wurde das EP R-Profil von primären hypothalamischen Neuronen und neuronalen Modellzelllinien charakterisiert, um zu prüfen, ob PGE2 in hypothalamischen Neuronen die Insulinsignalkette in ähnlicher Weise unterbricht wie in Hepatozyten. In allen neuronalen Zellen hemmte die Vorinkubation mit PGE2 die insulinstimulierte Akt-Phosphorylierung nicht. In der neuronalen hypothalamischen Zelllinie N 41 wirkte PGE2 eher synergistisch mit Insulin. In durch Retinsäure ausdifferenzierten SH SY5Y-Zellen waren die Ergebnisse allerdings widersprüchlich. Dies könnte darauf zurückzuführen sein, dass die Expression der EP Rezeptoren im Verlauf der Kultur stark schwankte und somit die EP R-Ausstattung der Zellen zwischen den Zellversuchen variierte. Auch in den primären hypothalamischen Neuronen variierte die EP R-Expression abhängig vom Differenzierungszustand und PGE2 beeinflusste die insulinstimulierte Akt-Phosphorylierung nicht. Obwohl in allen neuronalen Zellen die Akt-Phosphorylierung durch Insulin gesteigert wurde, konnte in keiner der Zellen eine insulinabhängige Regulation der Expression von Insulinzielgenen (POMC und AgRP) nachgewiesen werden. Das liegt wahrscheinlich an dem niedrigen Differenzierungsgrad der untersuchten Zellen. Im Rahmen der Adipositas kommt es zu einer Überaktivierung des Endocannabinoidsystems. Endocannabinoidrezeptoren sind mit den EP Rezeptoren verwandt. Daher wurde geprüft, ob Endocannabinoide die Insulinsignalweiterleitung in ähnlicher Weise beeinflussen können wie PGE2. Die Vorinkubation der N 41-Zellen für 330 min mit einem Endocannabinoidrezeptoragonisten steigerte die insulinstimulierte Akt-Phosphorylierung, was auf einen insulinsensitiven Effekt von Endocannabinoiden hindeutet. Dies steht im Widerspruch zu der in der Literatur beschriebenen endocannabinoidabhängigen Insulinresistenz, die aber auf indirekte, durch Endocannabinoide ausgelöste Veränderungen zurückzuführen sein könnte. N2 - The obesity related insulin resistance is accompanied by a low grade inflammation. In response to inflammatory stimuli, PGE2 is released from Kupffer cells and signals through four G-Protein coupled PGE2-receptors (EP1-EP4). Previous work showed that PGE2 attenuated insulin signaling in rat hepatocytes through an EP3ß- and ERK1/2-dependent mechanism. Since EP-receptor expression on hepatocytes varies between species and physiological conditions, the effect of the individual EP receptor subtypes on insulin signaling was studied in hepatoma cell lines expressing individual EP receptor subtypes. HepG2 cells lacking functional EP-receptors, and derivatives stably expressing either EP1 receptor (HepG2-EP1), EP3ß receptor (HepG2-EP3ß) or EP4 receptor (HepG2-EP4) and Fh-hTert cells expressing EP2- and EP4-receptor were pre-incubated with PGE2 for 330 min to mimic the sub-acute inflammation. The cells were subsequently stimulated with insulin for 15 min. Akt and ERK1/2 activation was determined by Western Blotting with phospho-specific antibodies. PGE2 inhibited insulin stimulated Akt phosphorylation in all cell lines expressing EP receptors, except in HepG2 cells which are lacking functional EP receptors. PGE2 increased insulin stimulated phosphorylation of the serine/threonine kinase ERK1/2 in all EP R expressing HepG2 cell lines except in Fh-hTert cells. In HepG2-EP1 and HepG2 EP3ß cells PGE2 increased the serine phosphorylation of the insulin receptor substrate, presumably through an ERK1/2 activation. This IRS-serine phosphorylation leads to attenuation of insulin signal transduction. Inhibiting ERK1/2 activation with a specific inhibitor attenuated the PGE2-dependent inhibition of insulin signal transmission in HepG2 EP3ß cells to some extent. ERK1/2 activation in these cells seems to be of major importance for the observed attenuation of insulin stimulated Akt phosphorylation. Application of inhibitors in the other cell lines stably expressing EP receptors provided evidence that other mechanisms contributed to the attenuation of insulin signaling. Insulin signal transduction in Fh-hTert cells by PGE2 was apparently blocked by an ERK1/2-independent mechanism. Increased PGE2 production during obesity is not limited to the periphery. Signs of inflammation have been detected in the hypothalamus, which might be associated with an increased PGE2 production. Therefore, the EP receptor profile of primary neurons as well as neuronal cell models was characterised in order to investigate, whether PGE2 attenuates insulin signal transduction in neuronal cells similar to what was observed in hepatocytes. Pre-incubation with PGE2 did not attenuate insulin stimulated Akt phosphorylation in all neuronal cells. The EP receptor profile in SH SY5Y cells and in primary neurons varied depending on the differentiation status of the cells. Although Akt-kinase was phosphorylated in response to insulin stimulation in all neuronal cells studied, gene expression of insulin target genes (POMC, AgRP) was not modulated by insulin. This might be due to the low level of differentiation of the investigated cells. In the course of obesity, an over-activation of the endocannabinoid system is detected. Since endocannabinoid receptors are related to EP receptors, it was investigated whether endocannabinoids can interfere with insulin signaling in a similar way as PGE2. Pre-incubation of the neuronal cell line N 41 for 330 min with an endocannabinoid receptor agonist, increased insulin stimulated Akt phosphorylation. This implies an insulin sensitising effect of endocannabinoids. This is contradictory to the endocannabinoid-dependent insulin resistance described in the literature and might be caused by indirect endocannabinoid-triggered mechanisms. KW - Insulin KW - Prostaglandin E2 KW - Endocannabinoide KW - Signalübertragung KW - Insulin KW - prostaglandin E2 KW - endocannabinoids KW - signal transduction Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-49678 ER -