TY - JOUR A1 - Zhou, Bin A1 - Rybski, Diego A1 - Kropp, Jürgen T1 - On the statistics of urban heat island intensity JF - Geophysical research letters N2 - We perform a systematic study of all cities in Europe to assess the Urban Heat Island (UHI) intensity by means of remotely sensed land surface temperature data. Defining cities as spatial clusters of urban land cover, we investigate the relationships of the UHI intensity, with the cluster size and the temperature of the surroundings. Our results show that in Europe, the UHI intensity in summer has a strong correlation with the cluster size, which can be well fitted by an empirical sigmoid model. Furthermore, we find a novel seasonality of the UHI intensity for individual clusters in the form of hysteresis-like curves. We characterize the shape and identify apparent regional patterns. Y1 - 2013 U6 - https://doi.org/10.1002/2013GL057320 SN - 0094-8276 SN - 1944-8007 VL - 40 IS - 20 SP - 5486 EP - 5491 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Zhou, Bin A1 - Rybski, Diego A1 - Kropp, Jürgen T1 - The role of city size and urban form in the surface urban heat island JF - Scientific reports N2 - Urban climate is determined by a variety of factors, whose knowledge can help to attenuate heat stress in the context of ongoing urbanization and climate change. We study the influence of city size and urban form on the Urban Heat Island (UHI) phenomenon in Europe and find a complex interplay between UHI intensity and city size, fractality, and anisometry. Due to correlations among these urban factors, interactions in the multi-linear regression need to be taken into account. We find that among the largest 5,000 cities, the UHI intensity increases with the logarithm of the city size and with the fractal dimension, but decreases with the logarithm of the anisometry. Typically, the size has the strongest influence, followed by the compactness, and the smallest is the influence of the degree to which the cities stretch. Accordingly, from the point of view of UHI alleviation, small, disperse, and stretched cities are preferable. However, such recommendations need to be balanced against e.g. positive agglomeration effects of large cities. Therefore, trade-offs must be made regarding local and global aims. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-04242-2 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Zhou, Bin A1 - Lauwaet, Dirk A1 - Hooyberghs, Hans A1 - De Ridder, Koen A1 - Kropp, Jürgen A1 - Rybski, Diego T1 - Assessing Seasonality in the Surface Urban Heat Island of London JF - Journal of applied meteorology and climatology N2 - This paper assesses the seasonality of the urban heat island (UHI) effect in the Greater London area (United Kingdom). Combining satellite-based observations and urban boundary layer climate modeling with the UrbClim model, the authors are able to address the seasonality of UHI intensity, on the basis of both land surface temperature (LST) and 2-m air temperature, for four individual times of the day (0130, 1030, 1330, and 2230 local time) and the daily means derived from them. An objective of this paper is to investigate whether the UHI intensities that are based on both quantities exhibit a similar hysteresis-like trajectory that is observed for LST when plotting the UHI intensity against the background temperature. The results show that the UrbClim model can satisfactorily reproduce both the observed urban rural LSTs and 2-m air temperatures as well as their differences and the hysteresis in the surface UHI. The hysteresis-like seasonality is largely absent in both the observed and modeled 2-m air temperatures, however. A sensitivity simulation of the UHI intensity to incoming solar radiation suggests that the hysteresis of the LST can mainly be attributed to the seasonal variation in incoming solar radiation. Y1 - 2016 U6 - https://doi.org/10.1175/JAMC-D-15-0041.1 SN - 1558-8424 SN - 1558-8432 VL - 55 SP - 493 EP - 505 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Rybski, Diego A1 - Ros, Anselmo Garcia Cantu A1 - Kropp, Jürgen T1 - Distance-weighted city growth JF - PHYSICAL REVIEW E N2 - Urban agglomerations exhibit complex emergent features of which Zipf’s law, i.e., a power-law size distribution, and fractality may be regarded as the most prominent ones. We propose a simplistic model for the generation of citylike structures which is solely based on the assumption that growth is more likely to take place close to inhabited space. The model involves one parameter which is an exponent determining how strongly the attraction decays with the distance. In addition, the model is run iteratively so that existing clusters can grow (together) and new ones can emerge. The model is capable of reproducing the size distribution and the fractality of the boundary of the largest cluster. Although the power-law distribution depends on both, the imposed exponent and the iteration, the fractality seems to be independent of the former and only depends on the latter. Analyzing land-cover data, we estimate the parameter-value gamma approximate to 2.5 for Paris and its surroundings. DOI: 10.1103/PhysRevE.87.042114 Y1 - 2013 U6 - https://doi.org/10.1103/PhysRevE.87.042114 SN - 1539-3755 VL - 87 IS - 4 PB - AMER PHYSICAL SOC CY - COLLEGE PK ER - TY - JOUR A1 - Rybski, Diego A1 - Reusser, Dominik Edwin A1 - Winz, Anna-Lena A1 - Fichtner, Christina A1 - Sterzel, Till A1 - Kropp, Jürgen T1 - Cities as nuclei of sustainability? JF - Environment and Planning B: Urban Analytics and City Science N2 - We have assembled CO2 emission figures from collections of urban GHG emission estimates published in peer-reviewed journals or reports from research institutes and non-governmental organizations. Analyzing the scaling with population size, we find that the exponent is development dependent with a transition from super- to sub-linear scaling. From the climate change mitigation point of view, the results suggest that urbanization is desirable in developed countries. Further, we compare this analysis with a second scaling relation, namely the fundamental allometry between city population and area, and propose that density might be a decisive quantity too. Last, we derive the theoretical country-wide urban emissions by integration and obtain a dependence on the size of the largest city. KW - Scaling KW - cities KW - climate change KW - development process KW - allometry Y1 - 2017 U6 - https://doi.org/10.1177/0265813516638340 SN - 2399-8083 SN - 2399-8091 VL - 44 IS - 3 SP - 425 EP - 440 PB - Sage Publ. CY - London ER - TY - JOUR A1 - Rybski, Diego A1 - Dawson, Richard J. A1 - Kropp, Jürgen T1 - Comparing generic and case study damage functions BT - London storm-surge example JF - Natural hazards review N2 - Two different approaches are used to assess the impacts associated with natural hazards and climate change in cities. A bottom-up approach uses high resolution data on constituent assets within the urban area. In contrast, a top-down approach uses less detailed information but is consequently more readily transferable. Here, we compare damage curves generated by each approach for coastal flooding in London. To compare them, we fit a log-logistic regression with three parameters to the calculated damage curves. We find that the functions are remarkably similar in their shape, albeit with different inflection points and a maximum damage that differs by 13%-25%. If rescaled, the curves agree almost exactly, which enables damage assessment to be undertaken following the calculation of the three parameters. Y1 - 2020 U6 - https://doi.org/10.1061/(ASCE)NH.1527-6996.0000336 SN - 1527-6988 SN - 1527-6996 VL - 21 IS - 1 PB - American Society of Civil Engineers CY - Reston ER - TY - JOUR A1 - Ribeiro, Haroldo V. A1 - Rybski, Diego A1 - Kropp, Jürgen T1 - Effects of changing population or density on urban carbon dioxide emissions JF - Nature Communications N2 - The question of whether urbanization contributes to increasing carbon dioxide emissions has been mainly investigated via scaling relationships with population or population density. However, these approaches overlook the correlations between population and area, and ignore possible interactions between these quantities. Here, we propose a generalized framework that simultaneously considers the effects of population and area along with possible interactions between these urban metrics. Our results significantly improve the description of emissions and reveal the coupled role between population and density on emissions. These models show that variations in emissions associated with proportionate changes in population or density may not only depend on the magnitude of these changes but also on the initial values of these quantities. For US areas, the larger the city, the higher is the impact of changing its population or density on its emissions; but population changes always have a greater effect on emissions than population density. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-11184-y SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Prahl, Boris F. A1 - Rybski, Diego A1 - Kropp, Jürgen A1 - Burghoff, Olaf A1 - Held, Hermann T1 - Applying stochastic small-scale damage functions to German winter storms JF - Geophysical research letters N2 - Analyzing insurance-loss data we derive stochastic storm-damage functions for residential buildings. On district level we fit power-law relations between daily loss and maximum wind speed, typically spanning more than 4 orders of magnitude. The estimated exponents for 439 German districts roughly range from 8 to 12. In addition, we find correlations among the parameters and socio-demographic data, which we employ in a simplified parametrization of the damage function with just 3 independent parameters for each district. A Monte Carlo method is used to generate loss estimates and confidence bounds of daily and annual storm damages in Germany. Our approach reproduces the annual progression of winter storm losses and enables to estimate daily losses over a wide range of magnitudes. Citation: Prahl, B. F., D. Rybski, J. P. Kropp, O. Burghoff, and H. Held (2012), Applying stochastic small-scale damage functions to German winter storms, Geophys. Res. Lett., 39, L06806, doi: 10.1029/2012GL050961. Y1 - 2012 U6 - https://doi.org/10.1029/2012GL050961 SN - 0094-8276 VL - 39 IS - 12 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Prahl, Boris F. A1 - Rybski, Diego A1 - Burghoff, Olaf A1 - Kropp, Jürgen T1 - Comparison of storm damage functions and their performance JF - Natural hazards and earth system sciences N2 - Winter storms are the most costly natural hazard for European residential property. We compare four distinct storm damage functions with respect to their forecast accuracy and variability, with particular regard to the most severe winter storms. The analysis focuses on daily loss estimates under differing spatial aggregation, ranging from district to country level. We discuss the broad and heavily skewed distribution of insured losses posing difficulties for both the calibration and the evaluation of damage functions. From theoretical considerations, we provide a synthesis between the frequently discussed cubic wind-damage relationship and recent studies that report much steeper damage functions for European winter storms. The performance of the storm loss models is evaluated for two sources of wind gust data, direct observations by the German Weather Service and ERA-Interim reanalysis data. While the choice of gust data has little impact on the evaluation of German storm loss, spatially resolved coefficients of variation reveal dependence between model and data choice. The comparison shows that the probabilistic models by Heneka et al. (2006) and Prahl et al. (2012) both provide accurate loss predictions for moderate to extreme losses, with generally small coefficients of variation. We favour the latter model in terms of model applicability. Application of the versatile deterministic model by Klawa and Ulbrich (2003) should be restricted to extreme loss, for which it shows the least bias and errors comparable to the probabilistic model by Prahl et al. (2012). Y1 - 2015 U6 - https://doi.org/10.5194/nhess-15-769-2015 SN - 1561-8633 VL - 15 IS - 4 SP - 769 EP - 788 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Prahl, Boris F. A1 - Rybski, Diego A1 - Boettle, Markus A1 - Kropp, Jürgen T1 - Damage functions for climate-related hazards: unification and uncertainty analysis JF - Natural hazards and earth system sciences N2 - Most climate change impacts manifest in the form of natural hazards. Damage assessment typically relies on damage functions that translate the magnitude of extreme events to a quantifiable damage. In practice, the availability of damage functions is limited due to a lack of data sources and a lack of understanding of damage processes. The study of the characteristics of damage functions for different hazards could strengthen the theoretical foundation of damage functions and support their development and validation. Accordingly, we investigate analogies of damage functions for coastal flooding and for wind storms and identify a unified approach. This approach has general applicability for granular portfolios and may also be applied, for example, to heat-related mortality. Moreover, the unification enables the transfer of methodology between hazards and a consistent treatment of uncertainty. This is demonstrated by a sensitivity analysis on the basis of two simple case studies (for coastal flood and storm damage). The analysis reveals the relevance of the various uncertainty sources at varying hazard magnitude and on both the microscale and the macroscale level. Main findings are the dominance of uncertainty from the hazard magnitude and the persistent behaviour of intrinsic uncertainties on both scale levels. Our results shed light on the general role of uncertainties and provide useful insight for the application of the unified approach. Y1 - 2016 U6 - https://doi.org/10.5194/nhess-16-1189-2016 SN - 1561-8633 VL - 16 SP - 1189 EP - 1203 PB - Copernicus CY - Göttingen ER -