TY - THES A1 - Werner, Deljana T1 - Versuche zur Gewinnung von katalytischen Antikörpern zur Hydrolyse von Arylcarbamaten und Arylharnstoffen T1 - Attempts to produce catalytic antibodies for hydrolysis of arylcarbamates and arylureas N2 - Im Rahmen dieser Arbeit gelang es, katalytische Antikörper zur Hydrolyse von Benzylphenylcarbamaten sowie zahlreiche monoklonale Antikörper gegen Haptene herzustellen. Es wurden verschiedene Hapten-Protein-Konjugate unter Verwendung unterschiedlicher Kopplungsmethoden hergestellt und charakterisiert. Zur Generierung der hydrolytisch aktiven Antikörper wurden Inzuchtmäuse mit KLH-Konjugaten von 4 Übergangszustandsanaloga (ÜZA) immunisiert. Mit Hilfe der Hybridomtechnik wurden verschiedene monoklonale Antikörper gegen diese ÜZA gewonnen. Dabei wurden sowohl verschiedene Immunisierungsschemata als auch verschiedene Inzuchtmausstämme und Fusionstechniken verwendet. Insgesamt wurden 32 monoklonale Antikörper gegen die verwendeten ÜZA selektiert. Diese Antikörper wurden in großen Mengen hergestellt und gereinigt. Zum Nachweis der Antikörper-vermittelten Katalyse wurden verschiedene Methoden entwickelt und eingesetzt, darunter immunologische Nachweismethoden mit Anti-Substrat- und Anti-Produkt-Antikörpern und eine photometrische Methode mit Dimethylaminozimtaldehyd. Der Nachweis der hydrolytischen Aktivität gelang mit Hilfe eines Enzymsensors, basierend auf immobilisierter Tyrosinase. Die Antikörper N1-BC1-D11, N1-FA7-C4, N1-FA7-D12 und R3-LG2-F9 hydrolysierten die Benzylphenylcarbamate POCc18, POCc19 und Substanz 27. Der Nachweis der hydrolytischen Aktivität dieser Antikörper gelang auch mit Hilfe der HPLC. Der katalytische Antikörper N1-BC1-D11 wurde kinetisch und thermodynamisch untersucht. Es wurde eine Michaelis-Menten-Kinetik mit Km von 210 µM, vmax von 3 mM/min und kcat von 222 min-1 beobachtet. Diese Werte korrelieren mit den Werten der wenigen bekannten Diphenylcarbamat-spaltenden Abzyme. Die Beschleunigungsrate des Antikörpers N1-BC1-D11 betrug 10. Das ÜZA Hei3 hemmte die hydrolytische Aktivität. Dies beweist, dass die Hydrolyse in der Antigenbindungsstelle stattfindet. Weiter wurde zwischen der Antikörperkonzentration und der Umsatzgeschwindigkeit eine lineare Abhängigkeit festgestellt. Die thermodynamische Gleichtgewichtsdissoziationskonstante KD des Abzyms von 2,6 nM zeugt von einer sehr guten Affinität zum ÜZA. Hydrolytisch aktiv waren nur Antikörper, die gegen das Übergangszustandsanalogon Hei3 hergestellt worden waren. Es wird vermutet, dass die Hydrolyse der Benzylphenylcarbamate über einen Additions-Eliminierungsmechanismus unter Ausbildung eines tetraedrischen Übergangszustandes verläuft, dessen analoge Verbindung Hei3 ist. Im Rahmen der Generierung von Nachweisantikörpern zur Detektion der Substratabnahme bei der Hydrolyse wurden Anti-Diuron-Antikörper hergestellt. Einer der Antikörper (B91-CG5) ist spezifisch für das Herbizid Diuron und hat einen IC50-Wert von 0,19 µg/l und eine untere Nachweisgrenze von 0,04 µg/l. Ein anderer Antikörper (B91-KF5) reagiert kreuz mit einer Palette ähnlicher Herbizide. Mit diesen Antikörpern wurde ein empfindlicher Labortest, der ein Monitoring von Diuron auf Grundlage des durch die Trinkwasserverordnung festgeschriebenen Wertes für Pflanzenschutzmittel von 0,1 µg/l erlaubt, aufgebaut. Der Effekt der Anti-Diuron-Antikörper auf die Diuron-inhibierte Photosynthese wurde in vitro und in vivo untersucht. Es wurde nachgewiesen, dass sowohl in isolierten Thylakoiden, als auch in intakten Algen eine Vorinkubation der Anti-Diuron-Antikörper mit Diuron zur Inaktivierung seiner Photosynthese-hemmenden Wirkung führt. Wurde der Elektronentransport in den isolierten Thylakoiden oder in Algen durch Diuron unterbrochen, so führte die Zugabe der Anti-Diuron-Antikörper zur Reaktivierung der Elektronenübertragung. N2 - Attempts to produce catalytic antibodies for hydrolysis of arylcarbamates and arylureas: The aim of the investigations was to produce antibodies which are able to cleave herbicides resistant to naturally occuring enzymes. Structurally similar carbamate and urea derivatives were chosen for the experiments. Phosphonate derivatives were synthesized that mimick possible transition state analogues in structure and charge. Mice were immunized with 4 different derivatives after conjugating them to carrier proteins. 32 hybridomas were established that produce monoclonal antibodies binding to these derivatives. The possible cleavage of substrates was determined by immunoassays with monoclonal antibodies against the substrate and the products and with a photometric method based on dimethylaminocinammonaldehyde. The measuring of cleavage products was succeeded by an amperometric method. The enzyme sensor was based on immobilized tyrosinase which oxidizes p-chlorophenol and phenol. The antibodies N1-BC1-D11, N1-FA7-C4, N1-FA7-D12 und R3-LG2-F9 hydrolysed the benzylphenylcarbamates POCc18, POCc19 und Substance 27. The hydrolytic activity of these antibodies was also succeeded with HPLC. The catalytic antibody N1-BC1-D11 was investigated kinetically and thermodynamically. A Michaelis-Menten-Kinetic was observed (at pH 8.0 exhibited a Km 210 µM, a vmax 3 mM/min and a kcat 222 min-1). These values are in the range of the values obtained for the antibody-catalysed hydrolysis of diphenylcarbamates. The rate enhancement of N1-BC1 was 10. The reaction was completely inhibited by stoichiometric quantities of the transition state analogue Hei3. This is consistent with the affinity of the abzyme to Hei3 of 2.6 nM, determined by BIAcore assay. Only antibodies generated against Hei3 showed hydrolytic activity. The hydrolysis of benzylphenylcarbamates presumably occurs via an addition-elimination-Mechanism involving a tetrahedral intermediate. In summary, this work presents the first example of antibody-catalysed hydrolysis of benzylphenylcarbamates. Monoclonal anti-diuron antibodies were generated that bind to the herbicide diuron with an extremely low equilibrium dissociation constant. A sensitive immunoassay with a low detection limit of 0.2 nM for diuron was established. This is the most sensitive immunological method for detection of diuron known so far. These antibodies were also used in vitro and in vivo to prevent diuron-dependent inhibition of photosynthesis or to restore photosynthesis after inhibition. In isolated thylakoids prepared from spinach leaves (Spinacia oleracea L.) the diuron-inhibited Hill reaction was reconstituted immediately following the addition of the monoclonal antibodies. In an in vivo approach the photosynthetic oxygen evolution of the cell wall deficient mutant (cw 15) of the green alga Chlamydomonas reinhardtii Dangeard was monitored. The antibodies prevented the diuron-dependent inhibition of photosynthesis and restored photosynthesis after inhibition. Transgenic plants that synthesize and accumulate these antibodies or antibody fragments and are therefore diuron-resistant can be created. KW - katalytische Antikörper KW - Arylcarbamate KW - Arylharnstoffe KW - monoklonale Antikörper KW - Haptene KW - Diuron KW - Anti-Diuron-Antikörper KW - Herbizide KW - Photosynthese KW - catalytic antibodies KW - arylcarbamates KW - arylureas KW - monoclonal antibodies KW - haptens KW - diuron KW - anti-diuron-antibodies KW - herbicides KW - photosynthesis Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000463 ER - TY - THES A1 - Dippong, Martin T1 - Direkte und indirekte Hapten-selektive Immunfluoreszenzmarkierung von Hybridomzellen zur Generierung monoklonaler Antikörper T1 - Direct and indirect hapten-specific immunofluorescence labeling of hybridoma cells for the generation of monoclonal antibodies N2 - Die Hybridomtechnik zur Produktion von monoklonalen Antikörpern ermöglichte einen großen Schritt in der Entwicklung von Immunoassays für die biochemische Forschung und klinische Diagnostik. Auch die Produktion von Antikörpern gegen niedermolekulare Analyten, Haptene, typische Targets in der Lebensmittel- und Umweltanalytik, erlangte in den letzten Jahren eine immer größere Bedeutung. Im Zuge der Durchführung der Hybridomtechnik werden tausende Antikörper-sezernierende und nicht-sezernierende Zellen generiert. Die Selektion der wenigen antigenselektiven Hybridomzellen zählt dabei zu den herausforderndsten Schritten für die Antikörpergewinnung. Bisherige Selektionsverfahren, wie die Limiting-Dilution-Klonierung in Verbindung mit Enzyme-linked Immunosorbent Assays (ELISAs), garantieren keine Monoklonalität und erlauben nur das Screening von einigen wenigen Zellklonen. Hingegen ermöglichen Hochdurchsatz-Selektionsmethoden, wie die Fluoreszenz-aktivierte Zellsortierung (FACS), einen sehr hohen Probendurchsatz. Eine Einzelzellablage garantiert hierbei Monoklonalität. Jedoch sind die dafür erforderlichen Zellmarkierungen oftmals zellschädigend oder aufwendig zu generieren. Auch ist bisher noch keine Markierungsmethode bekannt, die es ermöglicht, Hapten-selektive Hybridomzellen durchflusszytometrisch zu analysieren und eine FACS-Selektion durchzuführen. Aus diesem Grund wurden in dieser Arbeit zwei Zellmarkierungsmethoden entwickelt, die dies ermöglichen sollten. Die membranständigen Antikörper von Hybridomzellen sollten entweder direkt oder indirekt immunfluoreszenz-markiert und dadurch für die Durchflusszytometrie und FACS-Selektion zugänglich gemacht werden. Die direkte Markierung wurde mittels eines Hapten-Fluorophor-Konjugats durchgeführt. Sie ermöglichte erstmalig den Anteil an Haptenselektiven Hybridomzellen in einer Hybridomzelllinie zu überprüfen. Dies konnte für zwei Hapten-selektive Hybridomzelllinien, die Antikörper gegen das Hormon 17β-Estradiol und das Cardenolid Digoxigenin bilden, gezeigt werden. Durchflusszytometrie und ELISAs lieferten vergleichbare Ergebnisse. Zellen, die Hapten-selektiv markiert werden konnten, sezernierten ebenfalls Hapten-selektive Antikörper. Des Weiteren konnte die direkte Markierung dazu genutzt werden, zwei Mykotoxin-selektive Hybridomzelllinien, welche Antikörper gegen Aflatoxin und Zearalenon bilden, auf Monoklonalität zu testen. Dies ist mittels ELISA nicht möglich. Die Markierungsmethode eignete sich jedoch nur für fixierte Hybridomzellen. Eine Markierung von lebenden Zellen konnte weder durchflusszytometrisch noch mittels konfokaler Laser-Scanning-Mikroskopie gezeigt werden. Dies gelang erst mit einer neu entwickelten indirekten Immunfluoreszenzmarkierung. Dabei wurden die Zellen zunächst mit einem Hapten-Peroxidase-Konjugat inkubiert, gefolgt von einem Fluorophor-markierten anti-HRP-Antikörper-Konjugat. Dies wurde für zwei Analyten, das Hormon Estron und das Antiepileptikum Carbamazepin, gezeigt. Die indirekte Markierung wurde erfolgreich dazu verwendet, Carbamazepin-selektive Hybridomzellen aus einem Fusionsansatz für die monoklonale Antikörperproduktion auszusortieren. Damit wurde erstmalig eine Zellmarkierungsmethode entwickelt, die eine Hochdurchsatz-Selektion lebender Hybridomzellen aus einem Fusionsansatz ermöglicht. Sie ist nicht zellschädigend und kann zusätzlich zur Selektion Hapten-selektiver Plasmazellen verwendet werden. N2 - The ability to create monoclonal antibodies has allowed great strides to be made in immunoassay development for biochemical research and clinical diagnostics. Particularly for small molecular weight analytes, haptens, the need of selective antibodies has increased. The hybridoma technique generates thousands of fused antibody-secreting and non-secreting cells, with the majority being irrelevant. The subsequent screening and subcloning process in order to identify and isolate the very few hybrids that are secreting antibodies of the desired selectivity is a major concern. The traditional limiting dilution technique followed by enzymelinked immunosorbent assays (ELISAs) is inefficient and monoclonality is not guaranteed. Often the number of clones that can be screened is limited. High-throughput techniques such as fluorescence-activated cell sorting (FACS) provide an efficient tool to increase the number of cells to be screened. Furthermore, a single-cell deposition of cells would ensure monoclonality. However, antigen-selective cell labeling techniques are often cell damaging or laborious. The purpose of this study was to explore a cell labeling technique enabling the hapten-selective analysis and isolation of hybridoma cells via FACS. This would reduce much of the effort that has currently to be employed in hybridoma generation. For this reason, a direct and indirect hapten-selective labeling technique was developed. For the direct labeling, a haptenfluorophore conjugate was generated. The conjugate was used to tag membrane-bound immunoglobulin G of hybridoma cells and thereby enabling flow cytometric analysis. Using this kind of conjugate, it was possible to examine the selective antibody expression of hybridoma cell lines producing antibodies against the hormone estradiol and the steroid digoxigenin. Flow cytometric analysis and ELISAs showed comparable results: Cells, which were tagged with the corresponding hapten-fluorophore conjugate also secreted hapten-selective antibodies. Furthermore, it was possible to check hybridoma cell lines producing antibodies against the mycotoxins aflatoxin and zearalenone for monoclonality, which is not possible with ELISA. However, the direct labeling technique was only applicable to fixed cells. Successful labeling of living cells could neither be detected by flow cytometry nor by confocal laser scanning microscopy. On the contrary, using the newly developed indirect labeling technique, flow cytometric analysis and selection of living cells by FACS was possible. Here, the cells were first incubated with a hapten-peroxidase conjugate followed by a fluorophore-conjugated anti-peroxidase antibody. The technique was established on a hybridoma cell line selective for the hormone estrone. Furthermore, this labeling technique enabled for the first time the sorting of hybridoma cells producing selective antibodies against the medication carbamazepine out of a fusion mixture with high efficiency. The selected clones were used for monoclonal antibody production. The indirect labeling is harmless for cells and could also be applied on haptenselective plasma cells. KW - Durchflusszytometrie KW - Haptene KW - monoklonale Antikörper KW - Hybridom KW - Immunfluoreszenz KW - flow cytometry KW - hapten KW - monoclonal antibodies KW - hybridoma KW - immunofluorescence Y1 - 2017 ER -