TY - THES A1 - Scholz, Matthias T1 - Approaches to analyse and interpret biological profile data T1 - Methoden zur Analyse und Interpretation biologischer Profildaten N2 - Advances in biotechnologies rapidly increase the number of molecules of a cell which can be observed simultaneously. This includes expression levels of thousands or ten-thousands of genes as well as concentration levels of metabolites or proteins. Such Profile data, observed at different times or at different experimental conditions (e.g., heat or dry stress), show how the biological experiment is reflected on the molecular level. This information is helpful to understand the molecular behaviour and to identify molecules or combination of molecules that characterise specific biological condition (e.g., disease). This work shows the potentials of component extraction algorithms to identify the major factors which influenced the observed data. This can be the expected experimental factors such as the time or temperature as well as unexpected factors such as technical artefacts or even unknown biological behaviour. Extracting components means to reduce the very high-dimensional data to a small set of new variables termed components. Each component is a combination of all original variables. The classical approach for that purpose is the principal component analysis (PCA). It is shown that, in contrast to PCA which maximises the variance only, modern approaches such as independent component analysis (ICA) are more suitable for analysing molecular data. The condition of independence between components of ICA fits more naturally our assumption of individual (independent) factors which influence the data. This higher potential of ICA is demonstrated by a crossing experiment of the model plant Arabidopsis thaliana (Thale Cress). The experimental factors could be well identified and, in addition, ICA could even detect a technical artefact. However, in continuously observations such as in time experiments, the data show, in general, a nonlinear distribution. To analyse such nonlinear data, a nonlinear extension of PCA is used. This nonlinear PCA (NLPCA) is based on a neural network algorithm. The algorithm is adapted to be applicable to incomplete molecular data sets. Thus, it provides also the ability to estimate the missing data. The potential of nonlinear PCA to identify nonlinear factors is demonstrated by a cold stress experiment of Arabidopsis thaliana. The results of component analysis can be used to build a molecular network model. Since it includes functional dependencies it is termed functional network. Applied to the cold stress data, it is shown that functional networks are appropriate to visualise biological processes and thereby reveals molecular dynamics. N2 - Fortschritte in der Biotechnologie ermöglichen es, eine immer größere Anzahl von Molekülen in einer Zelle gleichzeitig zu erfassen. Das betrifft sowohl die Expressionswerte tausender oder zehntausender Gene als auch die Konzentrationswerte von Metaboliten oder Proteinen. Diese Profildaten verschiedener Zeitpunkte oder unterschiedlicher experimenteller Bedingungen (z.B. unter Stressbedingungen wie Hitze oder Trockenheit) zeigen, wie sich das biologische Experiment auf molekularer Ebene widerspiegelt. Diese Information kann genutzt werden, um molekulare Abläufe besser zu verstehen und um Moleküle oder Molekül-Kombinationen zu bestimmen, die für bestimmte biologische Zustände (z.B.: Krankheit) charakteristisch sind. Die Arbeit zeigt die Möglichkeiten von Komponenten-Extraktions-Algorithmen zur Bestimmung der wesentlichen Faktoren, die einen Einfluss auf die beobachteten Daten ausübten. Das können sowohl die erwarteten experimentellen Faktoren wie Zeit oder Temperatur sein als auch unerwartete Faktoren wie technische Einflüsse oder sogar unerwartete biologische Vorgänge. Unter der Extraktion von Komponenten versteht man die Reduzierung dieser stark hoch-dimensionalen Daten auf wenige neue Variablen, die eine Kombination aus allen ursprünglichen Variablen darstellen und als Komponenten bezeichnet werden. Die Standard-Methode für diesen Zweck ist die Hauptkomponentenanalyse (PCA). Es wird gezeigt, dass - im Vergleich zur nur die Varianz maximierenden PCA - moderne Methoden wie die Unabhängige Komponentenanalyse (ICA) für die Analyse molekularer Datensätze besser geeignet sind. Die Unabhängigkeit von Komponenten in der ICA entspricht viel besser unserer Annahme individueller (unabhängiger) Faktoren, die einen Einfluss auf die Daten ausüben. Dieser Vorteil der ICA wird anhand eines Kreuzungsexperiments mit der Modell-Pflanze Arabidopsis thaliana (Ackerschmalwand) demonstriert. Die experimentellen Faktoren konnten dabei gut identifiziert werden und ICA erkannte sogar zusätzlich einen technischen Störfaktor. Bei kontinuierlichen Beobachtungen wie in Zeitexperimenten zeigen die Daten jedoch häufig eine nichtlineare Verteilung. Für die Analyse dieser nichtlinearen Daten wird eine nichtlinear erweiterte Methode der PCA angewandt. Diese nichtlineare PCA (NLPCA) basiert auf einem neuronalen Netzwerk-Algorithmus. Der Algorithmus wurde für die Anwendung auf unvollständigen molekularen Daten erweitert. Dies ermöglicht es, die fehlenden Werte zu schätzen. Die Fähigkeit der nichtlinearen PCA zur Bestimmung nichtlinearer Faktoren wird anhand eines Kältestress-Experiments mit Arabidopsis thaliana demonstriert. Die Ergebnisse aus der Komponentenanalyse können zur Erstellung molekularer Netzwerk-Modelle genutzt werden. Da sie funktionelle Abhängigkeiten berücksichtigen, werden sie als Funktionale Netzwerke bezeichnet. Anhand der Kältestress-Daten wird demonstriert, dass solche funktionalen Netzwerke geeignet sind, biologische Prozesse zu visualisieren und dadurch die molekularen Dynamiken aufzuzeigen. KW - Bioinformatik KW - Hauptkomponentenanalyse KW - Unabhängige Komponentenanalyse KW - Neuronales Netz KW - Maschinelles Lernen KW - Fehlende Daten KW - Ackerschmalwand KW - nichtlineare PCA (NLPCA) KW - molekulare Netzwerke KW - nonlinear PCA (NLPCA) KW - molecular networks Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7839 ER - TY - THES A1 - Rogge-Solti, Andreas T1 - Probabilistic Estimation of Unobserved Process Events T1 - Probabilistische Abschätzung Unbeobachteter Prozessereignisse N2 - Organizations try to gain competitive advantages, and to increase customer satisfaction. To ensure the quality and efficiency of their business processes, they perform business process management. An important part of process management that happens on the daily operational level is process controlling. A prerequisite of controlling is process monitoring, i.e., keeping track of the performed activities in running process instances. Only by process monitoring can business analysts detect delays and react to deviations from the expected or guaranteed performance of a process instance. To enable monitoring, process events need to be collected from the process environment. When a business process is orchestrated by a process execution engine, monitoring is available for all orchestrated process activities. Many business processes, however, do not lend themselves to automatic orchestration, e.g., because of required freedom of action. This situation is often encountered in hospitals, where most business processes are manually enacted. Hence, in practice it is often inefficient or infeasible to document and monitor every process activity. Additionally, manual process execution and documentation is prone to errors, e.g., documentation of activities can be forgotten. Thus, organizations face the challenge of process events that occur, but are not observed by the monitoring environment. These unobserved process events can serve as basis for operational process decisions, even without exact knowledge of when they happened or when they will happen. An exemplary decision is whether to invest more resources to manage timely completion of a case, anticipating that the process end event will occur too late. This thesis offers means to reason about unobserved process events in a probabilistic way. We address decisive questions of process managers (e.g., "when will the case be finished?", or "when did we perform the activity that we forgot to document?") in this thesis. As main contribution, we introduce an advanced probabilistic model to business process management that is based on a stochastic variant of Petri nets. We present a holistic approach to use the model effectively along the business process lifecycle. Therefore, we provide techniques to discover such models from historical observations, to predict the termination time of processes, and to ensure quality by missing data management. We propose mechanisms to optimize configuration for monitoring and prediction, i.e., to offer guidance in selecting important activities to monitor. An implementation is provided as a proof of concept. For evaluation, we compare the accuracy of the approach with that of state-of-the-art approaches using real process data of a hospital. Additionally, we show its more general applicability in other domains by applying the approach on process data from logistics and finance. N2 - Unternehmen versuchen Wettbewerbsvorteile zu gewinnen und die Kundenzufriedenheit zu erhöhen. Um die Qualität und die Effizienz ihrer Prozesse zu gewährleisten, wenden Unternehmen Geschäftsprozessmanagement an. Hierbei spielt die Prozesskontrolle im täglichen Betrieb eine wichtige Rolle. Prozesskontrolle wird durch Prozessmonitoring ermöglicht, d.h. durch die Überwachung des Prozessfortschritts laufender Prozessinstanzen. So können Verzögerungen entdeckt und es kann entsprechend reagiert werden, um Prozesse wie erwartet und termingerecht beenden zu können. Um Prozessmonitoring zu ermöglichen, müssen prozessrelevante Ereignisse aus der Prozessumgebung gesammelt und ausgewertet werden. Sofern eine Prozessausführungsengine die Orchestrierung von Geschäftsprozessen übernimmt, kann jede Prozessaktivität überwacht werden. Aber viele Geschäftsprozesse eignen sich nicht für automatisierte Orchestrierung, da sie z.B. besonders viel Handlungsfreiheit erfordern. Dies ist in Krankenhäusern der Fall, in denen Geschäftsprozesse oft manuell durchgeführt werden. Daher ist es meist umständlich oder unmöglich, jeden Prozessfortschritt zu erfassen. Zudem ist händische Prozessausführung und -dokumentation fehleranfällig, so wird z.B. manchmal vergessen zu dokumentieren. Eine Herausforderung für Unternehmen ist, dass manche Prozessereignisse nicht im Prozessmonitoring erfasst werden. Solch unbeobachtete Prozessereignisse können jedoch als Entscheidungsgrundlage dienen, selbst wenn kein exaktes Wissen über den Zeitpunkt ihres Auftretens vorliegt. Zum Beispiel ist bei der Prozesskontrolle zu entscheiden, ob zusätzliche Ressourcen eingesetzt werden sollen, wenn eine Verspätung angenommen wird. Diese Arbeit stellt einen probabilistischen Ansatz für den Umgang mit unbeobachteten Prozessereignissen vor. Dabei werden entscheidende Fragen von Prozessmanagern beantwortet (z.B. "Wann werden wir den Fall beenden?", oder "Wann wurde die Aktivität ausgeführt, die nicht dokumentiert wurde?"). Der Hauptbeitrag der Arbeit ist die Einführung eines erweiterten probabilistischen Modells ins Geschäftsprozessmanagement, das auf stochastischen Petri Netzen basiert. Dabei wird ein ganzheitlicher Ansatz zur Unterstützung der einzelnen Phasen des Geschäftsprozesslebenszyklus verfolgt. Es werden Techniken zum Lernen des probabilistischen Modells, zum Vorhersagen des Zeitpunkts des Prozessendes, zum Qualitätsmanagement von Dokumentationen durch Erkennung fehlender Einträge, und zur Optimierung von Monitoringkonfigurationen bereitgestellt. Letztere dient zur Auswahl von relevanten Stellen im Prozess, die beobachtet werden sollten. Diese Techniken wurden in einer quelloffenen prototypischen Anwendung implementiert. Zur Evaluierung wird der Ansatz mit existierenden Alternativen an echten Prozessdaten eines Krankenhauses gemessen. Die generelle Anwendbarkeit in weiteren Domänen wird examplarisch an Prozessdaten aus der Logistik und dem Finanzwesen gezeigt. KW - Geschäftsprozessmanagement KW - stochastische Petri Netze KW - Bayessche Netze KW - Probabilistische Modelle KW - Vorhersage KW - Fehlende Daten KW - Process Mining KW - business process management KW - stochastic Petri nets KW - Bayesian networks KW - probabilistic models KW - prediction KW - missing data KW - process mining Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-70426 ER -