TY - JOUR A1 - Stelzel, Christine A1 - Schauenburg, Gesche A1 - Rapp, Michael A. A1 - Heinzel, Stephan A1 - Granacher, Urs T1 - Age-Related Interference between the Selection of Input-Output Modality Mappings and Postural Control-a Pilot Study JF - Frontiers in psychology N2 - Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19-30 and 66-84 years while they performed different versions of a spatial one-back working memory task during semi-tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory-manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working-memory load, processes related to simultaneously overcoming special linkages between input-and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks. KW - cognitive-postural dual task KW - postural stability KW - working memory KW - modality compatibility KW - aging Y1 - 2017 U6 - https://doi.org/10.3389/fpsyg.2017.00613 SN - 1664-1078 VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Ninaus, Manuel A1 - Moeller, Korbinian A1 - Kaufmann, Liane A1 - Fischer, Martin H. A1 - Nuerk, Hans-Christoph A1 - Wood, Guilherme T1 - Cognitive Mechanisms Underlying Directional and Non-directional Spatial-Numerical Associations across the Lifespan JF - Frontiers in psychology N2 - There is accumulating evidence suggesting an association of numbers with physical space. However, the origin of such spatial-numerical associations (SNAs) is still debated. In the present study we investigated the development of two SNAs in a cross-sectional study involving children, young and middle-aged adults as well as the elderly: (1) the SNARC (spatial-numerical association of response codes) effect, reflecting a directional SNA; and (2) the numerical bisection bias in a line bisection task with numerical flankers. Results revealed a consistent SNARC effect in all age groups that continuously increased with age. In contrast, a numerical bisection bias was only observed for children and elderly participants, implying an U-shaped distribution of this bias across age groups. Additionally, individual SNARC effects and numerical bisection biases did not correlate significantly. We argue that the SNARC effect seems to be influenced by longer-lasting experiences of cultural constraints such as reading and writing direction and may thus reflect embodied representations. Contrarily, the numerical bisection bias may originate from insufficient inhibition of the semantic influence of irrelevant numerical flankers, which should be more pronounced in children and elderly people due to development and decline of cognitive control, respectively. As there is an ongoing debate on the origins of SNAs in general and the SNARC effect in particular, the present results are discussed in light of these differing accounts in an integrative approach. However, taken together, the present pattern of results suggests that different cognitive mechanisms underlie the SNARC effect and the numerical bisection bias. KW - SNARC effect KW - spatial-numerical bias KW - line bisection task KW - cognitive development KW - aging Y1 - 2017 U6 - https://doi.org/10.3389/fpsyg.2017.01421 SN - 1664-1078 VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Heinzel, Stephan A1 - Rimpel, Jérôme A1 - Stelzel, Christine A1 - Rapp, Michael A. T1 - Transfer Effects to a Multimodal Dual-Task after Working Memory Training and Associated Neural Correlates in Older Adults BT - A Pilot Study JF - Frontiers in human neuroscience N2 - Working memory (WM) performance declines with age. However, several studies have shown that WM training may lead to performance increases not only in the trained task, but also in untrained cognitive transfer tasks. It has been suggested that transfer effects occur if training task and transfer task share specific processing components that are supposedly processed in the same brain areas. In the current study, we investigated whether single-task WM training and training-related alterations in neural activity might support performance in a dual-task setting, thus assessing transfer effects to higher-order control processes in the context of dual-task coordination. A sample of older adults (age 60–72) was assigned to either a training or control group. The training group participated in 12 sessions of an adaptive n-back training. At pre and post-measurement, a multimodal dual-task was performed in all participants to assess transfer effects. This task consisted of two simultaneous delayed match to sample WM tasks using two different stimulus modalities (visual and auditory) that were performed either in isolation (single-task) or in conjunction (dual-task). A subgroup also participated in functional magnetic resonance imaging (fMRI) during the performance of the n-back task before and after training. While no transfer to single-task performance was found, dual-task costs in both the visual modality (p < 0.05) and the auditory modality (p < 0.05) decreased at post-measurement in the training but not in the control group. In the fMRI subgroup of the training participants, neural activity changes in left dorsolateral prefrontal cortex (DLPFC) during one-back predicted post-training auditory dual-task costs, while neural activity changes in right DLPFC during three-back predicted visual dual-task costs. Results might indicate an improvement in central executive processing that could facilitate both WM and dual-task coordination. KW - working memory KW - cognitive training KW - modality KW - dual-task KW - aging KW - transfer KW - fMRI KW - neuroimaging Y1 - 2017 U6 - https://doi.org/10.3389/fnhum.2017.00085 VL - 11 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Stelzel, Christine A1 - Schauenburg, Gesche A1 - Rapp, Michael A. A1 - Heinzel, Stephan A1 - Granacher, Urs T1 - Age-Related Interference between the Selection of Input-Output Modality Mappings and Postural Control BT - a Pilot Study JF - Frontiers in psychology N2 - Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19–30 and 66–84 years while they performed different versions of a spatial one-back working memory task during semi-tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory-manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working-memory load, processes related to simultaneously overcoming special linkages between input- and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks. KW - cognitive-postural dual task KW - postural stability KW - working memory KW - modality compatibility KW - aging Y1 - 2017 U6 - https://doi.org/10.3389/fpsyg.2017.00613 SN - 1664-1078 VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER -