TY - JOUR A1 - Harms, Stephan A1 - Raetzke, Klaus A1 - Faupel, Franz A1 - Egger, Werner A1 - Ravello, Lori Boyd de A1 - Laschewsky, André A1 - Wang, Weinan A1 - Müller-Buschbaum, Peter T1 - Free volume and swelling in thin films of poly(n-isopropylacrylamide) end-capped with n-butyltrithiocarbonate N2 - The free volume in thin films of poly(N-isopropylacrylamid) end-capped with n-butyltrio-carbonate (nbc-PNIPAM) is probed with positron annihilation lifetime spectroscopy (PALS). The PALS measurements are performed as function of energy to obtain depth profiles of the free volume of nbc-PNIPAM films. The range of nbc-PNIPAM films with thicknesses from 40 to 200 nm is focused. With decreasing film thickness the free volume increases in good agreement with an increase in the maximum swelling capability of the nbc-PNIPAM films. Thus in thin hydrogel films the sorption and swelling behavior is governed by free volume. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/10003270 U6 - https://doi.org/10.1002/marc.201000067 SN - 1022-1336 ER - TY - JOUR A1 - Adelsberger, Joseph A1 - Kulkarni, Amit A1 - Jain, Abhinav A1 - Wang, Weinan A1 - Bivigou Koumba, Achille Mayelle A1 - Busch, Peter A1 - Pipich, Vitaliy A1 - Holderer, Olaf A1 - Hellweg, Thomas A1 - Laschewsky, André A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - Thermoresponsive PS-b-PNIPAM-b-PS micelles : aggregation behavior, segmental dynamics, and thermal response N2 - We have studied I lie thermal behavior of amphiphilic, symmetric triblock copolymers having short, deuterated polystyrene (PS) end blocks and a large poly(N-isopropylacrylarnicle) (PNIPAM) middle block exhibiting a lower critical solution temperature (LCST) in aqueous solution. A wide range of concentrations (0.1-300 mg/mL) is investigated using it number of analytical methods such as fluorescence correlation spectroscopy (FCS), turbidimetry, dynamic light scattering (DLS), small-angle neutron scattering (SANS), and neutron spin-echo spectroscopy (NSE). The critical micelle concentration is determined using FCS to be 1 mu M or less. The collapse of the micelles at the LCST is investigated using turbidimetry and DLS and shows a weak dependence on the degree of polymerization of the PNIPAM block. SANS with contrast matching allows its to reveal the core-shell Structure of the micelles as well as their correlation as a function of temperature. The segmental dynamics of the PNIPAM shell are studied as a function of temperature and arc found to be faster in the collapsed state than in the swollen state. The mode detected has a linear dispersion in q(2) and is found to be faster in the collapsed state as compared to the swollen state. We attribute this result to the averaging over mobile and immobilized segments. Y1 - 2010 UR - http://pubs.acs.org/journal/mamobx U6 - https://doi.org/10.1021/Ma902714p SN - 0024-9297 ER -