TY - JOUR A1 - Cuzzi, Jeff N. A1 - Burns, Joseph A. A1 - Charnoz, Sébastien A1 - Clark, Roger N. A1 - Colwell, Josh E. A1 - Dones, Luke A1 - Esposito, Larry W. A1 - Filacchione, Gianrico A1 - French, Richard G. A1 - Hedman, Matthew M. A1 - Kempf, Sascha A1 - Marouf, Essam A. A1 - Murray, Carl D. A1 - Nicholson, Phillip D. A1 - Porco, Carolyn C. A1 - Schmidt, Jürgen A1 - Showalter, Mark R. A1 - Spilker, Linda J. A1 - Spitale, Joseph N. A1 - Srama, Ralf A1 - Sremcević, Miodrag A1 - Tiscareno, Matthew Steven A1 - Weiss, John T1 - An evolving view of Saturn's dynamic rings N2 - We review our understanding of Saturn's rings after nearly 6 years of observations by the Cassini spacecraft. Saturn's rings are composed mostly of water ice but also contain an undetermined reddish contaminant. The rings exhibit a range of structure across many spatial scales; some of this involves the interplay of the fluid nature and the self-gravity of innumerable orbiting centimeter- to meter-sized particles, and the effects of several peripheral and embedded moonlets, but much remains unexplained. A few aspects of ring structure change on time scales as short as days. It remains unclear whether the vigorous evolutionary processes to which the rings are subject imply a much younger age than that of the solar system. Processes on view at Saturn have parallels in circumstellar disks. Y1 - 2010 UR - http://www.sciencemag.org/ U6 - https://doi.org/10.1126/science.1179118 SN - 0036-8075 ER - TY - JOUR A1 - Tobie, Gabriel A1 - Giese, Bernd A1 - Hurford, Terry Anthony A1 - Lopes, Rosaly M. A1 - Nimmo, Francis A1 - Postberg, Frank A1 - Retherford, Kurt D. A1 - Schmidt, Jürgen A1 - Spencer, John R. A1 - Tokano, Tetsuya A1 - Turtle, Elizabeth P. T1 - Surface, subsurface and atmosphere exchanges on the satellites of the outer solar system N2 - The surface morphology of icy moons is affected by several processes implicating exchanges between their subsurfaces and atmospheres (if any). The possible exchange of material between the subsurface and the surface is mainly determined by the mechanical properties of the lithosphere, which isolates the deep, warm and ductile ice material from the cold surface conditions. Exchanges through this layer occur only if it is sufficiently thin and/or if it is fractured owing to tectonic stresses, melt intrusion or impact cratering. If such conditions are met, cryomagma can be released, erupting fresh volatile-rich materials onto the surface. For a very few icy moons (Titan, Triton, Enceladus), the emission of gas associated with cryovolcanic activity is sufficiently large to generate an atmosphere, either long- lived or transient. For those moons, atmosphere-driven processes such as cryovolcanic plume deposition, phase transitions of condensable materials and wind interactions continuously re-shape their surfaces, and are able to transport cryovolcanically generated materials on a global scale. In this chapter, we discuss the physics of these different exchange processes and how they affect the evolution of the satellites' surfaces. Y1 - 2010 UR - http://www.springerlink.com/content/102996 U6 - https://doi.org/10.1007/s11214-010-9641-3 SN - 0038-6308 ER - TY - JOUR A1 - Seiß, Martin A1 - Spahn, Frank A1 - Schmidt, Jürgen T1 - Moonlet induced wakes in planetary rings : analytical model including eccentric orbits of moon and ring particles N2 - Saturn's rings host two known moons, Pan and Daphnis, which are massive enough to clear circumferential gaps in the ring around their orbits. Both moons create wake patterns at the gap edges by gravitational deflection of the ring material (Cuzzi, J.N., Scargle, J.D. [1985]. Astrophys. J. 292, 276-290; Showalter, MR., Cuzzi, J.N., Marouf, E.A., Esposito, LW. [1986]. Icarus 66, 297-323). New Cassini observations revealed that these wavy edges deviate from the sinusoidal waveform, which one would expect from a theory that assumes a circular orbit of the perturbing moon and neglects particle interactions. Resonant perturbations of the edges by moons outside the ring system, as well as an eccentric orbit of the embedded moon, may partly explain this behavior (Porco, CC., and 34 colleagues [2005]. Science 307, 1226-1236; Tiscareno, M.S., Burns, J.A., Hedman, MM., Spitale, J.N., Porco, CC., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, CC., Tiscareno, M.S., Burns, J.A., Dones, L [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, CC., Tiscareno, M.S. [2009]. Astron. J. 138, 272-286). Here we present an extended non-collisional streamline model which accounts for both effects. We describe the resulting variations of the density structure and the modification of the nonlinearity parameter q. Furthermore, an estimate is given for the applicability of the model. We use the streamwire model introduced by Stewart (Stewart, G.R. [1991]. Icarus 94, 436-450) to plot the perturbed ring density at the gap edges. We apply our model to the Keeler gap edges undulated by Daphnis and to a faint ringlet in the Encke gap close to the orbit of Pan. The modulations of the latter ringlet, induced by the perturbations of Pan (Burns, J.A., Hedman, M.M., Tiscareno, M.S., Nicholson, P.D., Streetman, B.J., Colwell, J.E., Showalter, M.R., Murray, C.D., Cuzzi, J.N., Porco, CC., and the Cassini ISS team [2005]. Bull. Am. Astron. Soc. 37, 766), can be well described by our analytical model. Our analysis yields a Hill radius of Pan of 17.5 km, which is 9% smaller than the value presented by Porco (Porco, CC., and 34 colleagues [2005]. Science 307, 1226- 1236), but fits well to the radial semi-axis of Pan of 17.4 km. This supports the idea that Pan has filled its Hill sphere with accreted material (Porco, C.C., Thomas, P.C., Weiss, J.W., Richardson, D.C. [2007]. Science 318, 1602-1607). A numerical solution of a streamline is used to estimate the parameters of the Daphnis-Keeler gap system, since the close proximity of the gap edge to the moon induces strong perturbations, not allowing an application of the analytic streamline model. We obtain a Hill radius of 5.1 km for Daphnis, an inner edge variation of 8 km, and an eccentricity for Daphnis of 1.5 x 10(-5). The latter two quantities deviate by a factor of two from values gained by direct observations (Jacobson, R.A., Spitale, J., Porco, C.C., Beurle, K., Cooper, N.J., Evans, M.W., Murray, C.D. [2008]. Astron. J. 135, 261-263; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767), which might be attributed to the neglect of particle interactions and vertical motion in our model. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/00191035 U6 - https://doi.org/10.1016/j.icarus.2010.06.013 SN - 0019-1035 ER -