TY - JOUR A1 - Henkel, Janin A1 - Klauder, Julia A1 - Statz, Meike A1 - Wohlenberg, Anne-Sophie A1 - Kuipers, Sonja A1 - Vahrenbrink, Madita A1 - Püschel, Gerhard Paul T1 - Enhanced Palmitate-Induced Interleukin-8 Formation in Human Macrophages by Insulin or Prostaglandin E-2 JF - Biomedicines N2 - Macrophages in pathologically expanded dysfunctional white adipose tissue are exposed to a mix of potential modulators of inflammatory response, including fatty acids released from insulin-resistant adipocytes, increased levels of insulin produced to compensate insulin resistance, and prostaglandin E-2 (PGE(2)) released from activated macrophages. The current study addressed the question of how palmitate might interact with insulin or PGE(2) to induce the formation of the chemotactic pro-inflammatory cytokine interleukin-8 (IL-8). Human THP-1 cells were differentiated into macrophages. In these macrophages, palmitate induced IL-8 formation. Insulin enhanced the induction of IL-8 formation by palmitate as well as the palmitate-dependent stimulation of PGE(2) synthesis. PGE(2) in turn elicited IL-8 formation on its own and enhanced the induction of IL-8 release by palmitate, most likely by activating the EP4 receptor. Since IL-8 causes insulin resistance and fosters inflammation, the increase in palmitate-induced IL-8 formation that is caused by hyperinsulinemia and locally produced PGE(2) in chronically inflamed adipose tissue might favor disease progression in a vicious feed-forward cycle. KW - macrophages KW - insulin KW - prostaglandin E-2 KW - interleukin-8 KW - inflammation Y1 - 2021 U6 - https://doi.org/10.3390/biomedicines9050449 SN - 2227-9059 VL - 9 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schell, Mareike A1 - Wardelmann, Kristina A1 - Kleinridders, Andre T1 - Untangling the effect of insulin action on brain mitochondria and metabolism JF - Journal of neuroendocrinology N2 - The regulation of energy homeostasis is controlled by the brain and, besides requiring high amounts of energy, it relies on functional insulin/insulin-like growth factor (IGF)-1 signalling in the central nervous system. This energy is mainly provided by mitochondria in form of ATP. Thus, there is an intricate interplay between mitochondrial function and insulin/IGF-1 action to enable functional brain signalling and, accordingly, propagate a healthy metabolism. To adapt to different nutritional conditions, the brain is able to sense the current energy status via mitochondrial and insulin signalling-dependent pathways and exerts an appropriate metabolic response. However, regional, cell type and receptor-specific consequences of this interaction occur and are linked to diverse outcomes such as altered nutrient sensing, body weight regulation or even cognitive function. Impairments of this cross-talk can lead to obesity and glucose intolerance and are linked to neurodegenerative diseases, yet they also induce a self-sustainable, dysfunctional 'metabolic triangle' characterised by insulin resistance, mitochondrial dysfunction and inflammation in the brain. The identification of causal factors deteriorating insulin action, mitochondrial function and concomitantly a signature of metabolic stress in the brain is of utter importance to offer novel mechanistic insights into development of the continuously rising prevalence of non-communicable diseases such as type 2 diabetes and neurodegeneration. This review aims to determine the effect of insulin action on brain mitochondrial function and energy metabolism. It precisely outlines the interaction and differences between insulin action, insulin-like growth factor (IGF)-1 signalling and mitochondrial function; distinguishes between causality and association; and reveals its consequences for metabolism and cognition. We hypothesise that an improvement of at least one signalling pathway can overcome the vicious cycle of a self-perpetuating metabolic dysfunction in the brain present in metabolic and neurodegenerative diseases. KW - brain KW - energy homeostasis KW - inflammation KW - insulin signalling KW - metabolism KW - mitochondrial function Y1 - 2021 U6 - https://doi.org/10.1111/jne.12932 SN - 0953-8194 SN - 1365-2826 VL - 33 IS - 4 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Engel, Tilman A1 - Schraplau, Anne A1 - Wochatz, Monique A1 - Kopinski, Stephan A1 - Sonnenburg, Dominik A1 - Schomöller, Anne A1 - Risch, Lucie A1 - Kaplick, Hannes A1 - Mayer, Frank T1 - Feasability of An Eccentric Isokinetic Protocol to Induce Trunk Muscle Damage: A Pilot Study T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Eccentric exercise is discussed as a treatment option for clinical populations, but specific responses in terms of muscle damage and systemic inflammation after repeated loading of large muscle groups have not been conclusively characterized. Therefore, this study tested the feasibility of an isokinetic protocol for repeated maximum eccentric loading of the trunk muscles. Nine asymptomatic participants (5 f/4 m; 34±6 yrs; 175±13 cm; 76±17 kg) performed three isokinetic 2-minute all-out trunk strength tests (1x concentric (CON), 2x eccentric (ECC1, ECC2), 2 weeks apart; flexion/extension, 60°/s, ROM 55°). Outcomes were peak torque, torque decline, total work, and indicators of muscle damage and inflammation (over 168 h). Statistics were done using the Friedman test (Dunn’s post-test). For ECC1 and ECC2, peak torque and total work were increased and torque decline reduced compared to CON. Repeated ECC bouts yielded unaltered torque and work outcomes. Muscle damage markers were highest after ECC1 (soreness 48 h, creatine kinase 72 h; p<0.05). Their overall responses (area under the curve) were abolished post-ECC2 compared to post-ECC1 (p<0.05). Interleukin-6 was higher post-ECC1 than CON, and attenuated post-ECC2 (p>0.05). Interleukin-10 and tumor necrosis factor-α were not detectable. All markers showed high inter-individual variability. The protocol was feasible to induce muscle damage indicators after exercising a large muscle group, but the pilot results indicated only weak systemic inflammatory responses in asymptomatic adults. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 773 KW - exercise KW - eccentric KW - muscle fatigue KW - trunk muscles KW - isokinetics KW - repeated bout effect KW - inflammation KW - exercise induced muscle damage KW - interleukin-6 KW - internleukin-10 KW - tumor necrosis factor-α Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-557409 SN - 1866-8364 SP - E9 EP - E17 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Engel, Tilman A1 - Schraplau, Anne A1 - Wochatz, Monique A1 - Kopinski, Stephan A1 - Sonnenburg, Dominik A1 - Schomöller, Anne A1 - Risch, Lucie A1 - Kaplick, Hannes A1 - Mayer, Frank T1 - Feasability of An Eccentric Isokinetic Protocol to Induce Trunk Muscle Damage: A Pilot Study JF - Sports Medicine International Open N2 - Eccentric exercise is discussed as a treatment option for clinical populations, but specific responses in terms of muscle damage and systemic inflammation after repeated loading of large muscle groups have not been conclusively characterized. Therefore, this study tested the feasibility of an isokinetic protocol for repeated maximum eccentric loading of the trunk muscles. Nine asymptomatic participants (5 f/4 m; 34±6 yrs; 175±13 cm; 76±17 kg) performed three isokinetic 2-minute all-out trunk strength tests (1x concentric (CON), 2x eccentric (ECC1, ECC2), 2 weeks apart; flexion/extension, 60°/s, ROM 55°). Outcomes were peak torque, torque decline, total work, and indicators of muscle damage and inflammation (over 168 h). Statistics were done using the Friedman test (Dunn’s post-test). For ECC1 and ECC2, peak torque and total work were increased and torque decline reduced compared to CON. Repeated ECC bouts yielded unaltered torque and work outcomes. Muscle damage markers were highest after ECC1 (soreness 48 h, creatine kinase 72 h; p<0.05). Their overall responses (area under the curve) were abolished post-ECC2 compared to post-ECC1 (p<0.05). Interleukin-6 was higher post-ECC1 than CON, and attenuated post-ECC2 (p>0.05). Interleukin-10 and tumor necrosis factor-α were not detectable. All markers showed high inter-individual variability. The protocol was feasible to induce muscle damage indicators after exercising a large muscle group, but the pilot results indicated only weak systemic inflammatory responses in asymptomatic adults. KW - exercise KW - eccentric KW - muscle fatigue KW - trunk muscles KW - isokinetics KW - repeated bout effect KW - inflammation KW - exercise induced muscle damage KW - interleukin-6 KW - internleukin-10 KW - tumor necrosis factor-α Y1 - 2021 U6 - https://doi.org/10.1055/a-1757-6724 SN - 2367-1890 VL - 6 SP - E9 EP - E17 PB - Thieme CY - Stuttgart ET - 1 ER - TY - THES A1 - Klauder, Julia T1 - Makrophagenaktivierung durch Hyperinsulinämie als Auslöser eines Teufelkreises der Entzündung im Kontext des metabolischen Syndroms T1 - Macrophage activation by hyperinsulinemia as a trigger of a vicious cycle of inflammation in the context of the metabolic syndrome N2 - Insulinresistenz ist ein zentraler Bestandteil des metabolischen Syndroms und trägt maßgeblich zur Ausbildung eines Typ-2-Diabetes bei. Eine mögliche Ursache für die Entstehung von Insulinresistenz ist eine chronische unterschwellige Entzündung, welche ihren Ursprung im Fettgewebe übergewichtiger Personen hat. Eingewanderte Makrophagen produzieren vermehrt pro-inflammatorische Mediatoren, wie Zytokine und Prostaglandine, wodurch die Konzentrationen dieser Substanzen sowohl lokal als auch systemisch erhöht sind. Darüber hinaus weisen übergewichtige Personen einen gestörten Fettsäuremetabolismus und eine erhöhte Darmpermeabilität auf. Ein gesteigerter Flux an freien Fettsäuren vom Fettgewebe in andere Organe führt zu einer lokalen Konzentrationssteigerung in diesen Organen. Eine erhöhte Darmpermeabilität erleichtert das Eindringen von Pathogenen und anderer körperfremder Substanzen in den Körper. Ziel dieser Arbeit war es, zu untersuchen, ob hohe Konzentrationen von Insulin, des bakteriellen Bestandteils Lipopolysaccharid (LPS) oder der freien Fettsäure Palmitat eine Entzündungsreaktion in Makrophagen auslösen oder verstärken können und ob diese Entzündungsantwort zur Ausbildung einer Insulinresistenz beitragen kann. Weiterhin sollte untersucht werden, ob Metabolite und Signalsubstanzen, deren Konzentrationen beim metabolischen Syndrom erhöht sind, die Produktion des Prostaglandins (PG) E2 begünstigen können und ob dieses wiederum die Entzündungsreaktion und seine eigene Produktion in Makrophagen regulieren kann. Um den Einfluss dieser Faktoren auf die Produktion pro-inflammatorischer Mediatoren in Makrophagen zu untersuchen, wurden Monozyten-artigen Zelllinien und primäre humane Monozyten, welche aus dem Blut gesunder Probanden isoliert wurden, in Makrophagen differenziert und mit Insulin, LPS, Palmitat und/ oder PGE2 inkubiert. Überdies wurden primäre Hepatozyten der Ratte isoliert und mit Überständen Insulin-stimulierter Makrophagen inkubiert, um zu untersuchen, ob die Entzündungsanwort in Makrophagen an der Ausbildung einer Insulinresistenz in Hepatozyten beteiligt ist. Insulin induzierte die Expression pro-inflammatorischer Zytokine in Makrophagen-artigen Zelllinien wahrscheinlich vorrangig über den Phosphoinositid-3-Kinase (PI3K)-Akt-Signalweg mit anschließender Aktiverung des Transkriptionsfaktors NF-κB (nuclear factor 'kappa-light-chain-enhancer' of activated B-cells). Die dabei ausgeschütteten Zytokine hemmten in primären Hepatozyten der Ratte die Insulin-induzierte Expression der Glukokinase durch Überstände Insulin-stimulierter Makrophagen. Auch LPS oder Palmitat, deren lokale Konzentrationen im Zuge des metabolischen Syndroms erhöht sind, waren in der Lage, die Expression pro-inflammatorischer Zytokine in Makrophagen-artigen Zelllinien zu stimulieren. Während LPS seine Wirkung, laut Literatur, unbestritten über eine Aktivierung des Toll-ähnlichen Rezeptors (toll-like receptor; TLR) 4 vermittelt, scheint Palmitat jedoch weitestgehend TLR4-unabhängig wirken zu können. Vielmehr schien die de novo-Ceramidsynthese eine entscheidene Rolle zu spielen. Darüber hinaus verstärkte Insulin sowohl die LPS- als auch die Palmitat-induzierte Ent-zündungsantwort in beiden Zelllinien. Die in Zelllinien gewonnenen Ergebnisse wurden größtenteils in primären humanen Makrophagen bestätigt. Desweiteren induzierten sowohl Insulin als auch LPS oder Palmitat die Produktion von PGE2 in den untersuchten Makrophagen. Die Daten legen nahe, dass dies auf eine gesteigerte Expression PGE2-synthetisierender Enzyme zurückzuführen ist. PGE2 wiederum hemmte auf der einen Seite die Stimulus-abhängige Expression des pro-inflammatorischen Zytokins Tumornekrosefaktor (TNF) α in U937-Makrophagen. Auf der anderen Seite verstärkte es jedoch die Expression der pro-inflammatorischen Zytokine Interleukin- (IL-) 1β und IL-8. Darüber hinaus verstärkte es die Expression von IL-6-Typ-Zytokinen, welche sowohl pro- als auch anti-inflammatorisch wirken können. Außerdem vestärkte PGE2 die Expression PGE2-synthetisierender Enzyme. Es scheint daher in der Lage zu sein, seine eigene Synthese zu verstärken. Zusammenfassend kann die Freisetzung pro-inflammatorischer Mediatoren aus Makro-phagen im Zuge einer Hyperinsulinämie die Entstehung einer Insulinresistenz begünstigen. Insulin ist daher in der Lage, einen Teufelskreis der immer stärker werdenden Insulin-resistenz in Gang zu setzen. Auch Metabolite und Signalsubstanzen, deren Konzentrationen beim metabolischen Syndrom erhöht sind (zum Beispiel LPS, freie Fettsäuren und PGE2), lösten Entzündungsantworten in Makrophagen aus. Das wechselseitige Zusammenspiel von Insulin und diesen Metaboliten und Signalsubstanzen löste eine stärkere Entzündungsantwort in Makrophagen aus als jeder der Einzelkomponenten. Die dadurch freigesetzten Zytokine könnten zur Manifestation einer Insulinresistenz und des metabolischen Syndroms beitragen. N2 - Insulin resistance is a central component of the metabolic syndrome and is a major contributor to the development of type 2 diabetes. One possible cause of insulin resistance is chronic low-grade inflammation, which originates in the adipose tissue of obese individuals. Immigrated macrophages produce increased levels of pro-inflammatory mediators such as cytokines and prostaglandins, resulting in increased concentrations of these substances both locally and systemically. In addition, obese individuals exhibit impaired fatty acid metabolism and increased intestinal permeability. Increased flux of free fatty acids from adipose tissue to other organs results in increased local concentrations in these organs. Increased intestinal permeability facilitates the entry of pathogens and other exogenous substances into the body. The aim of this work was to investigate whether high concentrations of insulin, the bacterial component lipopolysaccharide (LPS), or the free fatty acid palmitate can induce or enhance an inflammatory response in macrophages and whether this inflammatory response can contribute to the development of insulin resistance. Furthermore, to investigate whether metabolites and signaling substances whose concentrations are elevated in the metabolic syndrome can promote the production of prostaglandin (PG) E2 and whether this in turn can regulate the inflammatory response and its own production in macrophages. To investigate the influence of these factors on the production of pro-inflammatory mediators in macrophages, monocyte-like cell lines and primary human monocytes, that were isolated from the blood of healthy volunteers, were differentiated into macrophages and incubated for with insulin, LPS, palmitate and/ or PGE2. In addition, primary rat hepatocytes were isolated and incubated with supernatants of insulin-stimulated macrophages to investigate whether the inflammatory response in macrophages is involved in the development of insulin resistance in hepatocytes. Insulin induced the expression of pro-inflammatory cytokines in macrophage-like cell lines probably primarily via the phosphoinositide 3-kinase (PI3K)-Akt pathway with subsequent activation of the transcription factor NF-κB (nuclear factor 'kappa-light-chain-enhancer' of activated B-cells). The cytokines released in this process inhibited insulin-induced expression of glucokinase by supernatants of insulin-stimulated macrophages in primary rat hepatocytes. Also, LPS or palmitate, whose local concentrations are increased in the course of metabolic syndrome, were able to stimulate the expression of pro-inflammatory cytokines in macrophage-like cell lines. While LPS, according to the literature, undisputedly mediates its effect via activation of toll-like receptor (TLR) 4, palmitate, however, appears to be able to act mainly in a TLR4-independent manner. Rather, de novo ceramide synthesis appeared to play a crucial role. Moreover, insulin enhanced both LPS- and palmitate-induced inflammatory responses in both cell lines. The results obtained in macrophage-like cell lines were largely confirmed in primary human macrophages. Furthermore, both insulin and LPS or palmitate induced PGE2 production in the macrophages studied. The data suggest that this was not due to increased expression of arachidonic acid-synthesizing enzymes but rather to increased expression of PGE2-synthesizing enzymes. On the one hand PGE2 inhibited the stimulus-dependent expression of the pro-inflammatory cytokine tumor necrosis factor (TNF) α in U937 macrophages. However, on the other hand, it enhanced the expression of the pro-inflammatory cytokines interleukin- (IL-) 1β and IL-8. In addition, it enhanced the expression of IL-6-type cytokines, which can be both pro- and anti-inflammatory. In addition, PGE2 enhanced the expression of PGE2-synthesizing enzymes. It therefore appears to be able to enhance its own synthesis. In conclusion, the release of pro-inflammatory mediators from macrophages in the course of hyperinsulinemia may favor the development of insulin resistance. Thus, the hyperinsulinemia might be augmented in a vicious cycle feed forward loop. Metabolites and signaling substances whose concentrations are elevated in the metabolic syndrome (for example, LPS, free fatty acids, and PGE2) also triggered inflammatory responses in macrophages. The synergistic interaction of insulin and these metabolites and signaling substances triggered a stronger inflammatory response in macrophages than any of the individual components. The released cytokines could contribute to the manifestation of insulin resistance and the metabolic syndrome. KW - Metabolisches Syndrom KW - Entzündung KW - Makrophagen KW - Insulin KW - Zytokine KW - Typ-2-Diabetes KW - Prostaglandin KW - inflammation KW - insulin KW - macrophages KW - metabolic syndrom KW - prostaglandine KW - Type-2-diabetes KW - cytokines Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-520199 ER - TY - JOUR A1 - Henkel-Oberländer, Janin A1 - Klauder, Julia A1 - Statz, Meike A1 - Wohlenberg, Anne-Sophie A1 - Kuipers, Sonja A1 - Vahrenbrink, Madita A1 - Püschel, Gerhard T1 - Enhanced Palmitate-Induced Interleukin-8 Formation in Human Macrophages by Insulin or Prostaglandin E₂ JF - Biomedicines : open access journal N2 - Macrophages in pathologically expanded dysfunctional white adipose tissue are exposed to a mix of potential modulators of inflammatory response, including fatty acids released from insulin-resistant adipocytes, increased levels of insulin produced to compensate insulin resistance, and prostaglandin E₂ (PGE₂) released from activated macrophages. The current study addressed the question of how palmitate might interact with insulin or PGE₂ to induce the formation of the chemotactic pro-inflammatory cytokine interleukin-8 (IL-8). Human THP-1 cells were differentiated into macrophages. In these macrophages, palmitate induced IL-8 formation. Insulin enhanced the induction of IL-8 formation by palmitate as well as the palmitate-dependent stimulation of PGE₂ synthesis. PGE₂ in turn elicited IL-8 formation on its own and enhanced the induction of IL-8 release by palmitate, most likely by activating the EP4 receptor. Since IL-8 causes insulin resistance and fosters inflammation, the increase in palmitate-induced IL-8 formation that is caused by hyperinsulinemia and locally produced PGE₂ in chronically inflamed adipose tissue might favor disease progression in a vicious feed-forward cycle. KW - macrophages KW - insulin KW - prostaglandin E2 KW - interleukin-8 KW - inflammation Y1 - 2021 U6 - https://doi.org/10.3390/biomedicines9050449 SN - 2227-9059 VL - 9 IS - 5 PB - MDPI CY - Basel ER - TY - GEN A1 - Henkel-Oberländer, Janin A1 - Klauder, Julia A1 - Statz, Meike A1 - Wohlenberg, Anne-Sophie A1 - Kuipers, Sonja A1 - Vahrenbrink, Madita T1 - Enhanced Palmitate-Induced Interleukin-8 Formation in Human Macrophages by Insulin or Prostaglandin E₂ T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Macrophages in pathologically expanded dysfunctional white adipose tissue are exposed to a mix of potential modulators of inflammatory response, including fatty acids released from insulin-resistant adipocytes, increased levels of insulin produced to compensate insulin resistance, and prostaglandin E₂ (PGE₂) released from activated macrophages. The current study addressed the question of how palmitate might interact with insulin or PGE₂ to induce the formation of the chemotactic pro-inflammatory cytokine interleukin-8 (IL-8). Human THP-1 cells were differentiated into macrophages. In these macrophages, palmitate induced IL-8 formation. Insulin enhanced the induction of IL-8 formation by palmitate as well as the palmitate-dependent stimulation of PGE₂ synthesis. PGE₂ in turn elicited IL-8 formation on its own and enhanced the induction of IL-8 release by palmitate, most likely by activating the EP4 receptor. Since IL-8 causes insulin resistance and fosters inflammation, the increase in palmitate-induced IL-8 formation that is caused by hyperinsulinemia and locally produced PGE₂ in chronically inflamed adipose tissue might favor disease progression in a vicious feed-forward cycle. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1149 KW - macrophages KW - insulin KW - prostaglandin E2 KW - interleukin-8 KW - inflammation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-518377 SN - 1866-8372 IS - 1149 ER -