TY - THES A1 - Rietze, Clemens T1 - Optimierung und Analyse von molekularen Schaltern in komplexen Umgebungen: thermische Stabilität, Auslesbarkeit und Schaltbarkeit T1 - Optimization and analysis of molecular switches in complex environments: thermal stability, selectability and switchability N2 - Seit Jahrzehnten stellen die molekularen Schalter ein wachsendes Forschungsgebiet dar. Im Rahmen dieser Dissertation stand die Verbesserung der thermischen Stabilität, der Auslesbarkeit und Schaltbarkeit dieser molekularen Schalter in komplexen Umgebungen mithilfe computergestützter Chemie im Vordergrund. Im ersten Projekt wurde die Kinetik der thermischen E → Z-Isomerisierung und die damit verbundene thermische Stabilität eines Azobenzol-Derivats untersucht. Dafür wurde Dichtefunktionaltheorie (DFT) in Verbindung mit der Eyring-Theorie des Übergangszustandes (TST) angewendet. Das Azobenzol-Derivat diente als vereinfachtes Modell für das Schalten in einer komplexen Umgebung (hier in metallorganischen Gerüsten). Es wurden thermodynamische und kinetische Größen unter verschiedenen Einflüssen berechnet, wobei gute Übereinstimmungen mit dem Experiment gefunden wurden. Die hier verwendete Methode stellte einen geeigneten Ansatz dar, um diese Größen mit angemessener Genauigkeit vorherzusagen. Im zweiten Projekt wurde die Auslesbarkeit der Schaltzustände in Form des nichtlinearen optischen (NLO) Kontrastes für die Molekülklasse der Fulgimide untersucht. Die dafür benötigten dynamischen Hyperpolarisierbarkeiten unter Berücksichtigung der Elektronenkorrelation wurden mittels einer etablierten Skalierungsmethode berechnet. Es wurden verschiedene Fulgimide analysiert, wobei viele experimentelle Befunde bestätigt werden konnten. Darüber hinaus legte die theoretische Vorhersage für ein weiteres System nahe, dass insbesondere die Erweiterung des π-Elektronensystems ein vielversprechender Ansatz zur Verbesserung von NLO-Kontrasten darstellt. Die Fulgimide verfügen somit über nützliche Eigenschaften, sodass diese in Zukunft als Bauelemente in photonischen und optoelektronischen Bereichen Anwendungen finden könnten. Im dritten Projekt wurde die E → Z-Isomerisierung auf ein quantenmechanisch (QM) behandeltes Dimer mit molekularmechanischer (MM) Umgebung und zwei Fluorazobenzol-Monomeren durch Moleküldynamik simuliert. Dadurch wurde die Schaltbarkeit in komplexer Umgebung (hier selbstorgansierte Einzelschichten = SAMs) bzw. von Azobenzolderivaten analysiert. Mit dem QM/MM Modell wurden sowohl Van-der-Waals-Interaktionen mit der Umgebung als auch elektronische Kopplung (nur zwischen QM-Molekülen) berücksichtigt. Dabei wurden systematische Untersuchungen zur Packungsdichte durchgeführt. Es zeigte sich, dass bereits bei einem Molekülabstand von 4.5 Å die Quantenausbeute (prozentuale Anzahl erfolgreicher Schaltprozesse) des Monomers erreicht wird. Die größten Quantenausbeuten wurden für die beiden untersuchten Fluorazobenzole erzielt. Es wurden die Effekte des Molekülabstandes und der Einfluss von Fluorsubstituenten auf die Dynamik eingehend untersucht, sodass der Weg für darauf aufbauende Studien geebnet ist. N2 - For decades, molecular switches have represented a growing field of research. In this dissertation, the focus was on improving the thermal stability, selectability and switchability of these molecular switches in complex environments using computer-aided chemistry. In the first project, the kinetics of thermal E → Z isomerization and the associated thermal stability of an azobenzene derivative were investigated. For this purpose, density functional theory (DFT) in combination with the Eyring theory of transition state (TST) was applied. The azobenzene derivative served as a simplified model for switching in a complex environment (here in metalorganic frameworks). Thermodynamic and kinetic quantities under different influences were calculated, and good agreement with the experiment was found. The method used here represented a suitable approach to predict these quantities with reasonable accuracy. In the second project, the selectability of the switching states in the form of nonlinear optical (NLO) contrast for the molecular class of fulgimides was investigated. The dynamic hyperpolarizabilities required for this, taking into account electron correlation, were calculated using an established scaling method. Different fulgimides were analyzed and many experimental findings were confirmed. Furthermore, the theoretical prediction for another system suggested that especially the extension of the π-electron system is a promising approach to improve NLO contrasts. The fulgimides thus possess useful properties, so that they could find future applications as devices in photonic and optoelectronic fields. In the third project, the E → Z-isomerization on a quantum mechanical (QM) treated dimer with molecular mechanical (MM) environment and two fluorazobenzene monomers was simulated by molecular dynamics. Thereby the switchability in complex environment (here self-assembled monolayers = SAMs) respectively of azobenzene derivatives was analyzed. With the QM/MM model both Van-der-Waals-interactions with the environment and electronic coupling (only between QM molecules) were considered. Systematic investigations on packing density were performed. It was shown that already at a molecule distance of 4.5 Å the quantum yield (percentage number of successful switching processes) of the monomer is reached. The highest quantum yields were achieved for the two fluorazobenzenes investigated. The effects of molecule distance and the influence of fluorine substituents on the dynamics were investigated in detail, so that the path for studies is leveled. KW - elektronische Schalter KW - electrical switches KW - Azobenzol KW - Azobenzene KW - Fulgimide KW - self-assembled monolayer KW - selbstorganisierte Einzelschichten KW - metalorganic frameworks KW - theoretische Chemie KW - Eyring KW - Arrhenius KW - transition state KW - Übergangszustand KW - nichtadibatische Dynamik KW - non-adiabatic dynamic KW - Tully-Algorithmus KW - nichtadiabatische Kopplung KW - non-adiabatic coupling KW - freie Aktivierungsenthalpie KW - nicht-lineare Optik KW - non-linear optics KW - Hyperpolarisierbarkeit KW - hyperpolarizability KW - Moleküle in äußeren Feldern KW - Skalierungsmethode von Champagne KW - Sprungwahrscheinlichkeit KW - trajectory surface hopping KW - Anregungsspektren KW - Populationsanalyse KW - Quantenausbeute KW - quantum yield KW - E-Z Isomerisierung KW - trans-cis Isomerisierung KW - cis-trans Isomerisierung KW - Z-E Isomerisierung KW - Dichtefunktionaltheorie KW - DFT KW - Hartree Fock KW - SAM KW - MP2 KW - QM/MM KW - Pachkungsdichte KW - molekularer Abstand KW - D3 KW - Dispersionskorrektur KW - Kohn Sham KW - B3LYP KW - TDDFT KW - Berny-Algorithmus KW - Normalmodenanalyse KW - nichtlineare Optik KW - second harmonic generation KW - Frequenzverdopplung KW - SHG KW - SFG KW - statische Hyperpolarisierbarkeit KW - dynamische Hyperpolarisierbarkeit KW - static hyperpolarizability KW - dynamic hyperpolarizability KW - Tensor KW - Trajektorien KW - trajectory KW - AM1 KW - AM1/FOMO-CI KW - AM1/FOMO KW - Geometrieoptimierung KW - Elektronenstrukturrechnung KW - GAUSSIAN Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459594 ER -