TY - JOUR A1 - Biermann, Robin Tim A1 - Bach, Linh T. A1 - Kläring, Hans-Peter A1 - Baldermann, Susanne A1 - Börnke, Frederik A1 - Schwarz, Dietmar T1 - Discovering tolerance-A computational approach to assess abiotic stress tolerance in tomato under greenhouse conditions JF - Frontiers in sustainable food systems N2 - Modern plant cultivars often possess superior growth characteristics, but within a limited range of environmental conditions. Due to climate change, crops will be exposed to distressing abiotic conditions more often in the future, out of which heat stress is used as example for this study. To support identification of tolerant germplasm and advance screening techniques by a novel multivariate evaluation method, a diversity panel of 14 tomato genotypes, comprising Mediterranean landraces of Solanum lycopersicum, the cultivar "Moneymaker" and Solanum pennellii LA0716, which served as internal references, was assessed toward their tolerance against long-term heat stress. After 5 weeks of growth, young tomato plants were exposed to either control (22/18 degrees C) or heat stress (35/25 degrees C) conditions for 2 weeks. Within this period, water consumption, leaf angles and leaf color were determined. Additionally, gas exchange and leaf temperature were investigated. Finally, biomass traits were recorded. The resulting multivariate dataset on phenotypic plasticity was evaluated to test the hypothesis, that more tolerant genotypes have less affected phenotypes upon stress adaptation. For this, a cluster-analysis-based approach was developed that involved a principal component analysis (PCA), dimension reduction and determination of Euclidean distances. These distances served as measure for the phenotypic plasticity upon heat stress. Statistical evaluation allowed the identification and classification of homogeneous groups consisting each of four putative more or less heat stress tolerant genotypes. The resulting classification of the internal references as "tolerant" highlights the applicability of our proposed tolerance assessment model. PCA factor analysis on principal components 1-3 which covered 76.7% of variance within the phenotypic data, suggested that some laborious measure such as the gas exchange might be replaced with the determination of leaf temperature in larger heat stress screenings. Hence, the overall advantage of the presented method is rooted in its suitability of both, planning and executing screenings for abiotic stress tolerance using multivariate phenotypic data to overcome the challenge of identifying abiotic stress tolerant plants from existing germplasms and promote sustainable agriculture for the future. KW - abiotic stress KW - breeding KW - heat stress KW - phenotyping KW - Solanum KW - lycopersicum KW - screening KW - stress tolerance Y1 - 2022 U6 - https://doi.org/10.3389/fsufs.2022.878013 SN - 2571-581X VL - 6 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Perrella, Giorgio A1 - Bäurle, Isabel A1 - van Zanten, Martijn T1 - Epigenetic regulation of thermomorphogenesis and heat stress tolerance JF - New phytologist : international journal of plant science N2 - Many environmental conditions fluctuate and organisms need to respond effectively. This is especially true for temperature cues that can change in minutes to seasons and often follow a diurnal rhythm. Plants cannot migrate and most cannot regulate their temperature. Therefore, a broad array of responses have evolved to deal with temperature cues from freezing to heat stress. A particular response to mildly elevated temperatures is called thermomorphogenesis, a suite of morphological adaptations that includes thermonasty, formation of thin leaves and elongation growth of petioles and hypocotyl. Thermomorphogenesis allows for optimal performance in suboptimal temperature conditions by enhancing the cooling capacity. When temperatures rise further, heat stress tolerance mechanisms can be induced that enable the plant to survive the stressful temperature, which typically comprises cellular protection mechanisms and memory thereof. Induction of thermomorphogenesis, heat stress tolerance and stress memory depend on gene expression regulation, governed by diverse epigenetic processes. In this Tansley review we update on the current knowledge of epigenetic regulation of heat stress tolerance and elevated temperature signalling and response, with a focus on thermomorphogenesis regulation and heat stress memory. In particular we highlight the emerging role of H3K4 methylation marks in diverse temperature signalling pathways. KW - chromatin remodelling KW - elevated temperature KW - epigenetics KW - heat stress KW - histone modification KW - memory KW - temperature response KW - thermomorphogenesis Y1 - 2022 U6 - https://doi.org/10.1111/nph.17970 SN - 0028-646X SN - 1469-8137 VL - 234 IS - 4 SP - 1144 EP - 1160 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Mollavali, Mohanna A1 - Börnke, Frederik T1 - Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase genes of tomato (Solanum lycopersicum L.) and analysis of their differential expression in response to temperature JF - International journal of molecular sciences N2 - In plants, the trehalose biosynthetic pathway plays key roles in the regulation of carbon allocation and stress adaptation. Engineering of the pathway holds great promise to increase the stress resilience of crop plants. The synthesis of trehalose proceeds by a two-step pathway in which a trehalose-phosphate synthase (TPS) uses UDP-glucose and glucose-6-phosphate to produce trehalose-6 phosphate (T6P) that is subsequently dephosphorylated by trehalose-6 phosphate phosphatase (TPP). While plants usually do not accumulate high amounts of trehalose, their genome encodes large families of putative trehalose biosynthesis genes, with many members lacking obvious enzymatic activity. Thus, the function of putative trehalose biosynthetic proteins in plants is only vaguely understood. To gain a deeper insight into the role of trehalose biosynthetic proteins in crops, we assessed the enzymatic activity of the TPS/TPP family from tomato (Solanum lycopersicum L.) and investigated their expression pattern in different tissues as well as in response to temperature shifts. From the 10 TPS isoforms tested, only the 2 proteins belonging to class I showed enzymatic activity, while all 5 TPP isoforms investigated were catalytically active. Most of the TPS/TPP family members showed the highest expression in mature leaves, and promoter-reporter gene studies suggest that the two class I TPS genes have largely overlapping expression patterns within the vasculature, with only subtle differences in expression in fruits and flowers. The majority of tomato TPS/TPP genes were induced by heat stress, and individual family members also responded to cold. This suggests that trehalose biosynthetic pathway genes could play an important role during temperature stress adaptation. In summary, our study represents a further step toward the exploitation of the TPS and TPP gene families for the improvement of tomato stress resistance. KW - trehalose metabolism KW - heat stress KW - Solanum lycopersicum KW - yeast complementation Y1 - 2022 U6 - https://doi.org/10.3390/ijms231911436 SN - 1661-6596 SN - 1422-0067 VL - 23 IS - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Sedaghatmehr, Mastoureh A1 - Thirumalaikumar, Venkatesh P. A1 - Kamranfar, Iman A1 - Schulz, Karina A1 - Müller-Röber, Bernd A1 - Sampathkumar, Arun A1 - Balazadeh, Salma T1 - Autophagy complements metalloprotease FtsH6 in degrading plastid heat shock protein HSP21 during heat stress recovery JF - The journal of experimental botany : an official publication of the Society for Experimental Biology and of the Federation of European Societies of Plant Physiology N2 - Moderate and temporary heat stresses prime plants to tolerate, and survive, a subsequent severe heat stress. Such acquired thermotolerance can be maintained for several days under normal growth conditions, and can create a heat stress memory. We recently demonstrated that plastid-localized small heat shock protein 21 ( HSP21) is a key component of heat stress memory in Arabidopsis thaliana. A sustained high abundance of HSP21 during the heat stress recovery phase extends heat stress memory. The level of HSP21 is negatively controlled by plastid-localized metalloprotease FtsH6 during heat stress recovery. Here, we demonstrate that autophagy, a cellular recycling mechanism, exerts additional control over HSP21 degradation. Genetic and chemical disruption of both metalloprotease activity and autophagy trigger superior HSP21 accumulation, thereby improving memory. Furthermore, we provide evidence that autophagy cargo receptor ATG8-INTERACTING PROTEIN1 (ATI1) is associated with heat stress memory. ATI1 bodies co-localize with both autophagosomes and HSP21, and their abundance and transport to the vacuole increase during heat stress recovery. Together, our results provide new insights into the module for control of the regulation of heat stress memory, in which two distinct protein degradation pathways act in concert to degrade HSP21, thereby enabling cells to recover from the heat stress effect at the cost of reducing the heat stress memory. KW - Arabidopsis thaliana KW - ATI1 KW - FtsH6 KW - heat stress KW - HSP21 KW - plastid KW - selective autophagy KW - stress memory KW - stress recovery Y1 - 2021 U6 - https://doi.org/10.1093/jxb/erab304 SN - 0022-0957 SN - 1460-2431 VL - 72 IS - 21 SP - 7498 EP - 7513 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Castellanos, Reynel Urrea A1 - Friedrich, Thomas A1 - Petrovic, Nevena A1 - Altmann, Simone A1 - Brzezinka, Krzysztof A1 - Gorka, Michal A1 - Graf, Alexander A1 - Bäurle, Isabel T1 - FORGETTER2 protein phosphatase and phospholipase D modulate heat stress memory in Arabidopsis JF - The plant journal N2 - Plants can mitigate environmental stress conditions through acclimation. In the case of fluctuating stress conditions such as high temperatures, maintaining a stress memory enables a more efficient response upon recurring stress. In a genetic screen forArabidopsis thalianamutants impaired in the memory of heat stress (HS) we have isolated theFORGETTER2(FGT2) gene, which encodes a type 2C protein phosphatase (PP2C) of the D-clade.Fgt2mutants acquire thermotolerance normally; however, they are defective in the memory of HS. FGT2 interacts with phospholipase D alpha 2 (PLD alpha 2), which is involved in the metabolism of membrane phospholipids and is also required for HS memory. In summary, we have uncovered a previously unknown component of HS memory and identified the FGT2 protein phosphatase and PLD alpha 2 as crucial players, suggesting that phosphatidic acid-dependent signaling or membrane composition dynamics underlie HS memory. KW - priming KW - protein phosphatase KW - stress memory KW - heat stress KW - Arabidopsis KW - thaliana Y1 - 2020 U6 - https://doi.org/10.1111/tpj.14927 SN - 0960-7412 SN - 1365-313X VL - 104 IS - 1 SP - 7 EP - 17 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Thirumalaikumar, Venkatesh P. A1 - Gorka, Michal A1 - Schulz, Karina A1 - Masclaux-Daubresse, Celine A1 - Sampathkumar, Arun A1 - Skirycz, Aleksandra A1 - Vierstra, Richard D. A1 - Balazadeh, Salma T1 - Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1 JF - Autophagy N2 - In nature, plants are constantly exposed to many transient, but recurring, stresses. Thus, to complete their life cycles, plants require a dynamic balance between capacities to recover following cessation of stress and maintenance of stress memory. Recently, we uncovered a new functional role for macroautophagy/autophagy in regulating recovery from heat stress (HS) and resetting cellular memory of HS inArabidopsis thaliana. Here, we demonstrated that NBR1 (next to BRCA1 gene 1) plays a crucial role as a receptor for selective autophagy during recovery from HS. Immunoblot analysis and confocal microscopy revealed that levels of the NBR1 protein, NBR1-labeled puncta, and NBR1 activity are all higher during the HS recovery phase than before. Co-immunoprecipitation analysis of proteins interacting with NBR1 and comparative proteomic analysis of annbr1-null mutant and wild-type plants identified 58 proteins as potential novel targets of NBR1. Cellular, biochemical and functional genetic studies confirmed that NBR1 interacts with HSP90.1 (heat shock protein 90.1) and ROF1 (rotamase FKBP 1), a member of the FKBP family, and mediates their degradation by autophagy, which represses the response to HS by attenuating the expression ofHSPgenes regulated by the HSFA2 transcription factor. Accordingly, loss-of-function mutation ofNBR1resulted in a stronger HS memory phenotype. Together, our results provide new insights into the mechanistic principles by which autophagy regulates plant response to recurrent HS. KW - Arabidopsis thaliana KW - heat stress KW - HSFA2 KW - HSP90.1 KW - NBR1 KW - ROF1 KW - selective autophagy KW - stress memory KW - stress recovery Y1 - 2020 U6 - https://doi.org/10.1080/15548627.2020.1820778 SN - 1554-8635 SN - 1554-8627 VL - 17 IS - 9 SP - 2184 EP - 2199 PB - Taylor & Francis CY - Abingdon ER - TY - JOUR A1 - Liu, Hsiang-chin A1 - Lämke, Jörn A1 - Lin, Siou-ying A1 - Hung, Meng-Ju A1 - Liu, Kuan-Ming A1 - Charng, Yee-yung A1 - Bäurle, Isabel T1 - Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress JF - The plant journal N2 - Plants can be primed by a stress cue to mount a faster or stronger activation of defense mechanisms upon subsequent stress. A crucial component of such stress priming is the modified reactivation of genes upon recurring stress; however, the underlying mechanisms of this are poorly understood. Here, we report that dozens of Arabidopsis thaliana genes display transcriptional memory, i.e. stronger upregulation after a recurring heat stress, that lasts for at least 3 days. We define a set of transcription factors involved in this memory response and show that the transcriptional memory results in enhanced transcriptional activation within minutes of the onset of a heat stress cue. Further, we show that the transcriptional memory is active in all tissues. It may last for up to a week, and is associated during this time with histone H3 lysine 4 hypermethylation. This transcriptional memory is cis-encoded, as we identify a promoter fragment that confers memory onto a heterologous gene. In summary, heat-induced transcriptional memory is a widespread and sustained response, and our study provides a framework for future mechanistic studies of somatic stress memory in higher plants. KW - epigenetics KW - priming KW - heat stress KW - H3K4 methylation KW - transcriptional memory KW - Arabidopsis thaliana KW - HSF Y1 - 2018 U6 - https://doi.org/10.1111/tpj.13958 SN - 0960-7412 SN - 1365-313X VL - 95 IS - 3 SP - 401 EP - 413 PB - Wiley CY - Hoboken ER -