TY - JOUR A1 - Latour, Marilyn A1 - Randall, Suzanna K. A1 - Calamida, Annalisa A1 - Geier, Stephan Alfred A1 - Moehler, Sabine T1 - The ultimate spectroscopic census of extreme horizontal branch stars in omega Centauri JF - Astronomy and astrophysics : an international weekly journal N2 - The presence of extreme horizontal branch (EHB) and blue hook stars in some Galactic globular clusters (GGCs) constitutes one of the remaining mysteries of stellar evolution. While several evolutionary scenarios have been proposed to explain the characteristics of this peculiar population of evolved stars, their observational verification has been limited by the availability of spectroscopic data for a statistically significant sample of such objects in any single GGC. We recently launched the SHOTGLAS project with the aim of providing a comprehensive picture of this intriguing stellar population in terms of spectroscopic properties for all readily accessible GGCs hosting an EHB. In this first paper, we focus on omega Cen, a peculiar, massive GGC that hosts multiple stellar populations. We use non-LTE model atmospheres to derive atmospheric parameters (Te ff, log g and N(He) / N(H)) and spectroscopic masses for 152 EHB stars in the cluster. This constitutes the largest spectroscopic sample of EHB stars ever analyzed in a GGC and represents similar to 20% of the EHB population of omega Cen. We also search for close binaries among these stars based on radial velocity variations. Our results show that the EHB population of omega Cen is divided into three spectroscopic groups that are very distinct in the Te ff helium abundance plane. The coolest sdB-type stars (Te ff. 30 000 K) have a hydrogen-rich atmosphere, populate the theoretical EHB region in the Te ff log g plane, and form 26% of our sample. The hottest sdO-type stars (Te ff & 42 000 K) make up 10% of the sample, have a hydrogen-rich atmosphere and are thought to be in a post-EHB evolutionary phase. The majority of our sample is found at intermediate temperatures and consists of sdOB stars that have roughly solar or super-solar atmospheric helium abundances. It is these objects that constitute the blue hook at V > 18 : 5 mag in the omega Cen color-magnitude diagram. Interestingly, the helium-enriched sdOBs do not have a significant counterpart population in the Galactic field, indicating that their formation is dependent on the particular environment found in omega Cen and other select GGCs. Another major di ff erence between the EHB stars in omega Cen and the field is the fraction of close binaries. From our radial velocity survey we identify two binary candidates, however no orbital solutions could be determined. We estimate an EHB close binary fraction of similar to 5% in omega Cen. This low fraction is in line with findings for other GGCs, but in sharp contrast to the situation in the field, where around 50% of the sdB stars reside in close binaries. Finally, the mass distribution derived is very similar for all three spectroscopic groups, however the average mass (0.38 M fi) is lower than that expected from stellar evolution theory. While this mass conundrum has previously been noted for EHB stars in omega Cen, it so far appears to be unique to that cluster. KW - stars: atmospheres KW - stars: horizontal-branch KW - subdwarfs KW - stars: fundamental parameters KW - binaries: close KW - globular clusters: individual: NGC5139 Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201833129 SN - 1432-0746 VL - 618 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hainich, Rainer A1 - Oskinova, Lida A1 - Shenar, Tomer A1 - Marchant Campos, Pablo A1 - Eldridge, J. J. A1 - Sander, Andreas Alexander Christoph A1 - Hamann, Wolf-Rainer A1 - Langer, Norbert A1 - Todt, Helge Tobias T1 - Observational properties of massive black hole binary progenitors JF - Astronomy and astrophysics : an international weekly journal N2 - Context: The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed. KW - gravitational waves KW - binaries: close KW - stars: early-type KW - stars: atmospheres KW - stars: winds KW - outflows KW - stars: mass-loss Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201731449 SN - 1432-0746 VL - 609 PB - EDP Sciences CY - Les Ulis ER -