TY - JOUR A1 - Peng, Lei A1 - Utesch, Tillmann A1 - Yarman, Aysu A1 - Jeoung, Jae-Hun A1 - Steinborn, Silke A1 - Dobbek, Holger A1 - Mroginski, Maria Andrea A1 - Tanne, Johannes A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Surface-Tuned Electron Transfer and Electrocatalysis of Hexameric Tyrosine-Coordinated Heme Protein JF - Chemistry - a European journal N2 - Molecular modeling, electrochemical methods, and quartz crystal microbalance were used to characterize immobilized hexameric tyrosine-coordinated heme protein (HTHP) on bare carbon or on gold electrodes modified with positively and negatively charged self-assembled monolayers (SAMs), respectively. HTHP binds to the positively charged surface but no direct electron transfer (DET) is found due to the long distance of the active sites from the electrode surfaces. At carboxyl-terminated surfaces, the neutrally charged bottom of HTHP can bind to the SAM. For this "disc" orientation all six hemes are close to the electrode and their direct electron transfer should be efficient. HTHP on all negatively charged SAMs showed a quasi-reversible redox behavior with rate constant k(s) values between 0.93 and 2.86 s(-1) and apparent formal potentials E-app(0)' between -131.1 and -249.1 mV. On the MUA/MU-modified electrode, the maximum surface concentration corresponds to a complete monolayer of the hexameric HTHP in the disc orientation. HTHP electrostatically immobilized on negatively charged SAMs shows electrocatalysis of peroxide reduction and enzymatic oxidation of NADH. KW - electrochemistry KW - electron transfer KW - heme proteins KW - molecular modeling KW - monolayers Y1 - 2015 U6 - https://doi.org/10.1002/chem.201405932 SN - 0947-6539 SN - 1521-3765 VL - 21 IS - 20 SP - 7596 EP - 7602 PB - Wiley-VCH CY - Weinheim ER -