TY - JOUR A1 - Berry, Paul E. A1 - Dammhahn, Melanie A1 - Blaum, Niels T1 - Keeping cool on hot days BT - activity responses of African antelope to heat extremes JF - Frontiers in ecology and evolution N2 - Long-lived organisms are likely to respond to a rapidly changing climate with behavioral flexibility. Animals inhabiting the arid parts of southern Africa face a particularly rapid rise in temperature which in combination with food and water scarcity places substantial constraints on the ability of animals to tolerate heat. We investigated how three species of African antelope-springbok Antidorcas marsupialis, kudu Tragelaphus strepsiceros and eland T. oryx-differing in body size, habitat preference and movement ecology, change their activity in response to extreme heat in an arid savanna. Serving as a proxy for activity, dynamic body acceleration data recorded every five minutes were analyzed for seven to eight individuals per species for the three hottest months of the year. Activity responses to heat during the hottest time of day (the afternoons) were investigated and diel activity patterns were compared between hot and cool days. Springbok, which prefer open habitat, are highly mobile and the smallest of the species studied, showed the greatest decrease in activity with rising temperature. Furthermore, springbok showed reduced mean activity over the 24 h cycle on hot days compared to cool days. Large-bodied eland seemed less affected by afternoon heat than springbok. While eland also reduced diurnal activity on hot days compared to cool days, they compensated for this by increasing nocturnal activity, possibly because their predation risk is lower. Kudu, which are comparatively sedentary and typically occupy shady habitat, seemed least affected during the hottest time of day and showed no appreciable difference in diel activity patterns between hot and cool days. The interplay between habitat preference, body size, movement patterns, and other factors seems complex and even sub-lethal levels of heat stress have been shown to impact an animal's long-term survival and reproduction. Thus, differing heat tolerances among species could result in a shift in the composition of African herbivore communities as temperatures continue to rise, with significant implications for economically important wildlife-based land use and conservation. KW - springbok KW - kudu KW - eland KW - dynamic body acceleration KW - tri-axial accelerometers KW - behavioral flexibility KW - climate change KW - savanna ecology Y1 - 2023 U6 - https://doi.org/10.3389/fevo.2023.1172303 SN - 2296-701X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Stiegler, Jonas A1 - Pahl, Janice A1 - Guillen, Rafael Arce A1 - Ullmann, Wiebke A1 - Blaum, Niels T1 - The heat is on BT - impacts of rising temperature on the activity of a common European mammal JF - Frontiers in Ecology and Evolution N2 - Climate conditions severely impact the activity and, consequently, the fitness of wildlife species across the globe. Wildlife can respond to new climatic conditions, but the pace of human-induced change limits opportunities for adaptation or migration. Thus, how these changes affect behavior, movement patterns, and activity levels remains unclear. In this study, we investigate how extreme weather conditions affect the activity of European hares (Lepus europaeus) during their peak reproduction period. When hares must additionally invest energy in mating, prevailing against competitors, or lactating, we investigated their sensitivities to rising temperatures, wind speed, and humidity. To quantify their activity, we used the overall dynamic body acceleration (ODBA) calculated from tri-axial acceleration measurements of 33 GPS-collared hares. Our analysis revealed that temperature, humidity, and wind speed are important in explaining changes in activity, with a strong response for high temperatures above 25 & DEG;C and the highest change in activity during temperature extremes of over 35 & DEG;C during their inactive period. Further, we found a non-linear relationship between temperature and activity and an interaction of activity changes between day and night. Activity increased at higher temperatures during the inactive period (day) and decreased during the active period (night). This decrease was strongest during hot tropical nights. At a stage of life when mammals such as hares must substantially invest in reproduction, the sensitivity of females to extreme temperatures was particularly pronounced. Similarly, both sexes increased their activity at high humidity levels during the day and low wind speeds, irrespective of the time of day, while the effect of humidity was stronger for males. Our findings highlight the importance of understanding the complex relationships between extreme weather conditions and mammal behavior, critical for conservation and management. With ongoing climate change, extreme weather events such as heat waves and heavy rainfall are predicted to occur more often and last longer. These events will directly impact the fitness of hares and other wildlife species and hence the population dynamics of already declining populations across Europe. KW - activity KW - ODBA KW - animal tracking KW - European hare KW - extreme weather events KW - climate change Y1 - 2023 U6 - https://doi.org/10.3389/fevo.2023.1193861 SN - 2296-701X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Veh, Georg A1 - Lützow, Natalie A1 - Kharlamova, Varvara A1 - Petrakov, Dmitry A1 - Hugonnet, Romain A1 - Korup, Oliver T1 - Trends, breaks, and biases in the frequency of reported glacier lake outburst floods JF - Earth's future N2 - Thousands of glacier lakes have been forming behind natural dams in high mountains following glacier retreat since the early 20th century. Some of these lakes abruptly released pulses of water and sediment with disastrous downstream consequences. Yet it remains unclear whether the reported rise of these glacier lake outburst floods (GLOFs) has been fueled by a warming atmosphere and enhanced meltwater production, or simply a growing research effort. Here we estimate trends and biases in GLOF reporting based on the largest global catalog of 1,997 dated glacier-related floods in six major mountain ranges from 1901 to 2017. We find that the positive trend in the number of reported GLOFs has decayed distinctly after a break in the 1970s, coinciding with independently detected trend changes in annual air temperatures and in the annual number of field-based glacier surveys (a proxy of scientific reporting). We observe that GLOF reports and glacier surveys decelerated, while temperature rise accelerated in the past five decades. Enhanced warming alone can thus hardly explain the annual number of reported GLOFs, suggesting that temperature-driven glacier lake formation, growth, and failure are weakly coupled, or that outbursts have been overlooked. Indeed, our analysis emphasizes a distinct geographic and temporal bias in GLOF reporting, and we project that between two to four out of five GLOFs on average might have gone unnoticed in the early to mid-20th century. We recommend that such biases should be considered, or better corrected for, when attributing the frequency of reported GLOFs to atmospheric warming. KW - glaciers KW - climate change KW - hazard KW - mountains KW - cryosphere KW - frequency Y1 - 2022 U6 - https://doi.org/10.1029/2021EF002426 SN - 2328-4277 VL - 10 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Souto-Veiga, Rodrigo A1 - Groeneveld, Juergen A1 - Enright, Neal J. A1 - Fontaine, Joseph B. A1 - Jeltsch, Florian T1 - Declining pollination success reinforces negative climate and fire change impacts in a serotinous, fire-killed plant JF - Plant ecology : an international journal N2 - Climate change projections predict that Mediterranean-type ecosystems (MTEs) are becoming hotter and drier and that fires will become more frequent and severe. While most plant species in these important biodiversity hotspots are adapted to hot, dry summers and recurrent fire, the Interval Squeeze framework suggests that reduced seed production (demographic shift), reduced seedling establishment after fire (post fire recruitment shift), and reduction in the time between successive fires (fire interval shift) will threaten fire killed species under climate change. One additional potential driver of accelerated species decline, however, has not been considered so far: the decrease in pollination success observed in many ecosystems worldwide has the potential to further reduce seed accumulation and thus population persistence also in these already threatened systems. Using the well-studied fire-killed and serotinous shrub species Banksia hookeriana as an example, we apply a new spatially implicit population simulation model to explore population dynamics under past (1988-2002) and current (2003-2017) climate conditions, deterministic and stochastic fire regimes, and alternative scenarios of pollination decline. Overall, model results suggest that while B. hookeriana populations were stable under past climate conditions, they will not continue to persist under current (and prospective future) climate. Negative effects of climatic changes and more frequent fires are reinforced by the measured decline in seed set leading to further reduction in the mean persistence time by 12-17%. These findings clearly indicate that declining pollination rates can be a critical factor that increases further the pressure on the persistence of fire-killed plants. Future research needs to investigate whether other fire-killed species are similarly threatened, and if local population extinction may be compensated by recolonization events, facilitating persistence in spatially structured meta-communities. KW - climate change KW - fire frequency KW - interval squeeze KW - pollination KW - process-based simulation model KW - mediterranean-type ecosystem Y1 - 2022 U6 - https://doi.org/10.1007/s11258-022-01244-7 SN - 1385-0237 SN - 1573-5052 VL - 223 IS - 7 SP - 863 EP - 881 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Ben Nsir, Siwar A1 - Jomaa, Seifeddine A1 - Yildirim, Umit A1 - Zhou, Xiangqian A1 - D'Oria, Marco A1 - Rode, Michael A1 - Khlifi, Slaheddine T1 - Assessment of climate change impact on discharge of the lakhmass catchment (Northwest Tunisia) JF - Water N2 - The Mediterranean region is increasingly recognized as a climate change hotspot but is highly underrepresented in hydrological climate change studies. This study aims to investigate the climate change effects on the hydrology of Lakhmass catchment in Tunisia. Lakhmass catchment is a part of the Medium Valley of Medjerda in northwestern Tunisia that drains an area of 126 km(2). First, the Hydrologiska Byrans Vattenbalansavdelning light (HBV-light) model was calibrated and validated successfully at a daily time step to simulate discharge during the 1981-1986 period. The Nash Sutcliffe Efficiency and Percent bias (NSE, PBIAS) were (0.80, +2.0%) and (0.53, -9.5%) for calibration (September 1982-August 1984) and validation (September 1984-August 1986) periods, respectively. Second, HBV-light model was considered as a predictive tool to simulate discharge in a baseline period (1981-2009) and future projections using data (precipitation and temperature) from thirteen combinations of General Circulation Models (GCMs) and Regional Climatic Models (RCMs). We used two trajectories of Representative Concentration Pathways, RCP4.5 and RCP8.5, suggested by the Intergovernmental Panel on Climate Change (IPCC). Each RCP is divided into three projection periods: near-term (2010-2039), mid-term (2040-2069) and long-term (2070-2099). For both scenarios, a decrease in precipitation and discharge will be expected with an increase in air temperature and a reduction in precipitation with almost 5% for every +1 degrees C of global warming. By long-term (2070-2099) projection period, results suggested an increase in temperature with about 2.7 degrees C and 4 degrees C, and a decrease in precipitation of approximately 7.5% and 15% under RCP4.5 and RCP8.5, respectively. This will likely result in a reduction of discharge of 12.5% and 36.6% under RCP4.5 and RCP8.5, respectively. This situation calls for early climate change adaptation measures under a participatory approach, including multiple stakeholders and water users. KW - hydrological modeling KW - HBV-light model KW - Mediterranean KW - discharge KW - climate change KW - RCP4,5 and 8,5 Y1 - 2022 U6 - https://doi.org/10.3390/w14142242 SN - 2073-4441 VL - 14 IS - 14 PB - MDPI CY - Basel ER - TY - JOUR A1 - McCool, Weston C. A1 - Codding, Brian F. A1 - Vernon, Kenneth B. A1 - Wilson, Kurt M. A1 - Yaworsky, Peter M. A1 - Marwan, Norbert A1 - Kennett, Douglas J. T1 - Climate change-induced population pressure drives high rates of lethal violence in the Prehispanic central Andes JF - Proceedings of the National Academy of Sciences of the United States of America : PNAS N2 - Understanding the influence of climate change and population pressure on human conflict remains a critically important topic in the social sciences. Long-term records that evaluate these dynamics across multiple centuries and outside the range of modern climatic variation are especially capable of elucidating the relative effect of-and the interaction between-climate and demography. This is crucial given that climate change may structure population growth and carrying capacity, while both climate and population influence per capita resource availability. This study couples paleoclimatic and demographic data with osteological evaluations of lethal trauma from 149 directly accelerator mass spectrometry C-14-dated individuals from the Nasca highland region of Peru. Multiple local and supraregional precipitation proxies are combined with a summed probability distribution of 149 C-14 dates to estimate population dynamics during a 700-y study window. Counter to previous findings, our analysis reveals a precipitous increase in violent deaths associated with a period of productive and stable climate, but volatile population dynamics. We conclude that favorable local climate conditions fostered population growth that put pressure on the marginal and highly circumscribed resource base, resulting in violent resource competition that manifested in over 450 y of internecine warfare. These findings help support a general theory of intergroup violence, indicating that relative resource scarcity-whether driven by reduced resource abundance or increased competition-can lead to violence in subsistence societies when the outcome is lower per capita resource availability. KW - climate change KW - population pressure KW - warfare KW - lethal violence KW - Andes Y1 - 2022 U6 - https://doi.org/10.1073/pnas.2117556119 SN - 0027-8424 SN - 1091-6490 VL - 119 IS - 17 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Kong, Xiangzhen A1 - Ghaffar, Salman A1 - Determann, Maria A1 - Friese, Kurt A1 - Jomaa, Seifeddine A1 - Mi, Chenxi A1 - Shatwell, Tom A1 - Rinke, Karsten A1 - Rode, Michael T1 - Reservoir water quality deterioration due to deforestation emphasizes the indirect effects of global change JF - Water research : a journal of the International Association on Water Quality (IAWQ) N2 - Deforestation is currently a widespread phenomenon and a growing environmental concern in the era of rapid climate change. In temperate regions, it is challenging to quantify the impacts of deforestation on the catchment dynamics and downstream aquatic ecosystems such as reservoirs and disentangle these from direct climate change impacts, let alone project future changes to inform management. Here, we tackled this issue by investigating a unique catchment-reservoir system with two reservoirs in distinct trophic states (meso- and eutrophic), both of which drain into the largest drinking water reservoir in Germany. Due to the prolonged droughts in 2015-2018, the catchment of the mesotrophic reservoir lost an unprecedented area of forest (exponential increase since 2015 and ca. 17.1% loss in 2020 alone). We coupled catchment nutrient exports (HYPE) and reservoir ecosystem dynamics (GOTM-WET) models using a process-based modeling approach. The coupled model was validated with datasets spanning periods of rapid deforestation, which makes our future projections highly robust. Results show that in a short-term time scale (by 2035), increasing nutrient flux from the catchment due to vast deforestation (80% loss) can turn the mesotrophic reservoir into a eutrophic state as its counterpart. Our results emphasize the more prominent impacts of deforestation than the direct impact of climate warming in impairment of water quality and ecological services to downstream aquatic ecosystems. Therefore, we propose to evaluate the impact of climate change on temperate reservoirs by incorporating a time scale-dependent context, highlighting the indirect impact of deforestation in the short-term scale. In the long-term scale (e.g. to 2100), a guiding hypothesis for future research may be that indirect effects (e.g., as mediated by catchment dynamics) are as important as the direct effects of climate warming on aquatic ecosystems. KW - deforestation KW - climate change KW - temperate regions KW - reservoir KW - eutrophication KW - process-based modeling Y1 - 2022 U6 - https://doi.org/10.1016/j.watres.2022.118721 SN - 0043-1354 SN - 1879-2448 VL - 221 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - THES A1 - Hippel, Barbara von T1 - Long-term bacteria-fungi-plant associations in permafrost soils inferred from palaeometagenomics N2 - The arctic is warming 2 – 4 times faster than the global average, resulting in a strong feedback on northern ecosystems such as boreal forests, which cover a vast area of the high northern latitudes. With ongoing global warming, the treeline subsequently migrates northwards into tundra areas. The consequences of turning ecosystems are complex: on the one hand, boreal forests are storing large amounts of global terrestrial carbon and act as a carbon sink, dragging carbon dioxide out of the global carbon cycle, suggesting an enhanced carbon uptake with increased tree cover. On the other hand, with the establishment of trees, the albedo effect of tundra decreases, leading to enhanced soil warming. Meanwhile, permafrost thaws, releasing large amounts of previously stored carbon into the atmosphere. So far, mainly vegetation dynamics have been assessed when studying the impact of warming onto ecosystems. Most land plants are living in close symbiosis with bacterial and fungal communities, sustaining their growth in nutrient poor habitats. However, the impact of climate change on these subsoil communities alongside changing vegetation cover remains poorly understood. Therefore, a better understanding of soil community dynamics on multi millennial timescales is inevitable when addressing the development of entire ecosystems. Unravelling long-term cross-kingdom dependencies between plant, fungi, and bacteria is not only a milestone for the assessment of warming on boreal ecosystems. On top, it also is the basis for agriculture strategies to sustain society with sufficient food in a future warming world. The first objective of this thesis was to assess ancient DNA as a proxy for reconstructing the soil microbiome (Manuscripts I, II, III, IV). Research findings across these projects enable a comprehensive new insight into the relationships of soil microorganisms to the surrounding vegetation. First, this was achieved by establishing (Manuscript I) and applying (Manuscript II) a primer pair for the selective amplification of ancient fungal DNA from lake sediment samples with the metabarcoding approach. To assess fungal and plant co-variation, the selected primer combination (ITS67, 5.8S) amplifying the ITS1 region was applied on samples from five boreal and arctic lakes. The obtained data showed that the establishment of fungal communities is impacted by warming as the functional ecological groups are shifting. Yeast and saprotroph dominance during the Late Glacial declined with warming, while the abundance of mycorrhizae and parasites increased with warming. The overall species richness was also alternating. The results were compared to shotgun sequencing data reconstructing fungi and bacteria (Manuscripts III, IV), yielding overall comparable results to the metabarcoding approach. Nonetheless, the comparison also pointed out a bias in the metabarcoding, potentially due to varying ITS lengths or copy numbers per genome. The second objective was to trace fungus-plant interaction changes over time (Manuscripts II, III). To address this, metabarcoding targeting the ITS1 region for fungi and the chloroplast P6 loop for plants for the selective DNA amplification was applied (Manuscript II). Further, shotgun sequencing data was compared to the metabarcoding results (Manuscript III). Overall, the results between the metabarcoding and the shotgun approaches were comparable, though a bias in the metabarcoding was assumed. We demonstrated that fungal shifts were coinciding with changes in the vegetation. Yeast and lichen were mainly dominant during the Late Glacial with tundra vegetation, while warming in the Holocene lead to the expansion of boreal forests with increasing mycorrhizae and parasite abundance. Aside, we highlighted that Pinaceae establishment is dependent on mycorrhizal fungi such as Suillineae, Inocybaceae, or Hyaloscypha species also on long-term scales. The third objective of the thesis was to assess soil community development on a temporal gradient (Manuscripts III, IV). Shotgun sequencing was applied on sediment samples from the northern Siberian lake Lama and the soil microbial community dynamics compared to ecosystem turnover. Alongside, podzolization processes from basaltic bedrock were recovered (Manuscript III). Additionally, the recovered soil microbiome was compared to shotgun data from granite and sandstone catchments (Manuscript IV, Appendix). We assessed if the establishment of the soil microbiome is dependent on the plant taxon and as such comparable between multiple geographic locations or if the community establishment is driven by abiotic soil properties and as such the bedrock area. We showed that the development of soil communities is to a great extent driven by the vegetation changes and temperature variation, while time only plays a minor role. The analyses showed general ecological similarities especially between the granite and basalt locations, while the microbiome on species-level was rather site-specific. A greater number of correlated soil taxa was detected for deep-rooting boreal taxa in comparison to grasses with shallower roots. Additionally, differences between herbaceous taxa of the late Glacial compared to taxa of the Holocene were revealed. With this thesis, I demonstrate the necessity to investigate subsoil community dynamics on millennial time scales as it enables further understanding of long-term ecosystem as well as soil development processes and such plant establishment. Further, I trace long-term processes leading to podzolization which supports the development of applied carbon capture strategies under future global warming. N2 - Die Arktis erwärmt sich schneller als der weltweite Durschnitt, was die dortigen Ökosysteme wie die borealen Nadelwälder stark beeinflusst. Die Baumgrenze verschiebt sich durch veränderte Wachstumsbedingungen nach Norden und breitet sich in Tundra-Gegenden aus. Das führt zu komplexen Auswirkungen auf den Kohlenstoffkreislauf, da durch das Baumwachstum vermehrt CO2 im Boden gespeichert wird. Andererseits wird der Albedo-Effekt der Tundra verringert und der Boden erwärmt sich verstärkt. Das wiederum führt zum Tauen von Permafrost und setzt große Mengen an gespeichertem Kohlenstoff frei. Bislang wurde vor allem die Auswirkung der Erwärmung auf Vegetationsdynamiken untersucht. Für ein gesundes Pflanzenwachstum stehen die meisten Landpflanzen in engem Austausch mit einer Vielzahl an Bakterien und Pilzen. Es ist bislang wenig verstanden, wie diese Bodengemeinschaften durch den Klimawandel beeinflusst werden. Es ist deshalb notwendig, verstärkt auch die Langzeitabhängigkeiten der Pflanzen von Mikroorganismen zu betrachten. Dies ist nicht nur ein Meilenstein bei der Untersuchung des Klimawandels auf arktische Ökosysteme. Zudem wird so die Entwicklung angepasster Strategien im Bereich der Landwirtschaft ermöglicht, was die Grundlage dafür ist, die wachsende Bevölkerung auch in Zukunft mit ausreichend Nahrungsmitteln versorgen zu können. Im ersten Teil meiner Arbeit untersuche ich das Potential, die Dynamiken von Bodenmikroorganismen aus Seesedimenten zu rekonstruieren. Ich habe gezeigt, dass molekulargenetische Analysen das sowohl für Pilze als auch Bakterien auf großen Zeitskalen ermöglichen. Eine Zuweisung der Mikroorganismen zu ihren Funktionen im Ökosystem ermöglichte, Dynamiken in den Nährstoffkreisläufen sowie in Pilzökologien zu verstehen. Die Analyse der komplexen Assoziationen von Pilzen und Pflanzen bildete den zweiten Teil meiner Arbeit. Hier konnte ich zeigen, dass Pilze und Pflanzen spezifische Muster in ihren Vorkommen miteinander zeigen und dass die Vegetation das Pilzvorkommen auch auf großen Zeitskalen beeinflusst. Die Tundravegetation des Spätglazials war vor allem von Flechten und Hefevorkommen dominiert, während die Einwanderung von borealen Wäldern in die untersuchten Gebiete zu zunehmder Mykorrhiza- und Parasitenverbreitung führte. Ich habe auch gezeigt, dass die Etablierung von Pinaceen langfristig von spezifischen Mykorrhiza-Pilzen wie Suillineae, Inocybaceae oder Hyaloscypha-Arten abhängt. Das dritte Ziel meiner Arbeit war es, zeitliche Dynamiken in der Zusammensetzung von Bodenorganismen im Bezug zur Entstehung von Böden zu rekonstruieren. Mir gelang es, die Verwitterung von Basalt nachzuvollziehen und daraus die Entstehung von Podsol abzuleiten. Ein Vergleich zu Bodengesellschaften aus Granit- und Sandstein-Einzugsgebieten zeigte, dass sich die Granit- und Basalt-Bodeneigenschaften ähneln. Allerdings zeigten die Pflanzen an den Standorten ein sehr ortsspezifisches Mikrobiom und somit eine lokale Anpassung an die Wachstumsbedingungen. Ich konnte mit dieser Arbeit zeigen, dass die Rekonstruktion von Bodenmikroorganismen im Vergleich zur Vegetation einen Einblick in Ökosystemdynamiken unter Klimawandel ermöglicht. Dies ermöglicht ein besseres Verständnis von Bodenentstehungsprozessen und vereinfacht die Entwicklung angewandter carbon capture Strategien. KW - sedimentary ancient DNA KW - ecology KW - lake sediment KW - Arctic KW - ecosystem reconstruction KW - climate change KW - treeline dynamics KW - microbial soil communities KW - plant-microbe interactions KW - Arktis KW - Klimawandel KW - Ökologie KW - Ökosystem-Rekonstruktion KW - Seesediment KW - mikrobielle Bodengemeinschaften KW - Pflanzen-Mikroben-Interaktionen KW - sedimentary ancient DNA KW - Baumgrenzen-Dynamik Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-636009 ER - TY - JOUR A1 - Katzenberger, Anja A1 - Levermann, Anders A1 - Schewe, Jacob A1 - Pongratz, Julia T1 - Intensification of very wet monsoon seasons in India under global warming JF - Geophysical research letters N2 - Rainfall-intense summer monsoon seasons on the Indian subcontinent that are exceeding long-term averages cause widespread floods and landslides. Here we show that the latest generation of coupled climate models robustly project an intensification of very rainfall-intense seasons (June-September). Under the shared socioeconomic pathway SSP5-8.5, very wet monsoon seasons as observed in only 5 years in the period 1965-2015 are projected to occur 8 times more often in 2050-2100 in the multi-model average. Under SSP2-4.5, these seasons become only a factor of 6 times more frequent, showing that even modest efforts to mitigate climate change can have a strong impact on the frequency of very strong rainfall seasons. Besides, we find that the increasing risk of extreme seasonal rainfall is accompanied by a shift from days with light rainfall to days with moderate or heavy rainfall. Additionally, the number of wet days is projected to increase. KW - Indian monsoon KW - climate modeling KW - extreme seasons KW - climate change KW - CMIP6 KW - India Y1 - 2022 U6 - https://doi.org/10.1029/2022GL098856 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 15 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Kuhla, Kilian A1 - Willner, Sven N. A1 - Otto, Christian A1 - Geiger, Tobias A1 - Levermann, Anders T1 - Ripple resonance amplifies economic welfare loss from weather extremes JF - Environmental research letters : ERL / Institute of Physics N2 - The most complex but potentially most severe impacts of climate change are caused by extreme weather events. In a globally connected economy, damages can cause remote perturbations and cascading consequences-a ripple effect along supply chains. Here we show an economic ripple resonance that amplifies losses when consecutive or overlapping weather extremes and their repercussions interact. This amounts to an average amplification of 21% for climate-induced heat stress, river floods, and tropical cyclones. Modeling the temporal evolution of 1.8 million trade relations between >7000 regional economic sectors, we find that the regional responses to future extremes are strongly heterogeneous also in their resonance behavior. The induced effect on welfare varies between gains due to increased demand in some regions and losses due to demand or supply shortages in others. Within the current global supply network, the ripple resonance effect of extreme weather is strongest in high-income economies-an important effect to consider when evaluating past and future economic climate impacts. KW - consecutive disasters KW - economic ripple resonance KW - repercussion resonance KW - weather extremes KW - supply network KW - climate impacts KW - climate change Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac2932 SN - 1748-9326 VL - 16 IS - 11 PB - IOP Publ. Ltd. CY - Bristol ER -