TY - JOUR A1 - Cencil, Ugo A1 - Nitschke, Felix A1 - Steup, Martin A1 - Minassian, Berge A. A1 - Colleoni, Christophe A1 - Ball, Steven G. T1 - Transition from glycogen to starch metabolism in Archaeplastida JF - Trends in plant science N2 - In this opinion article we propose a scenario detailing how two crucial components have evolved simultaneously to ensure the transition of glycogen to starch in the cytosol of the Archaeplastida last common ancestor: (i) the recruitment of an enzyme from intracellular Chlamydiae pathogens to facilitate crystallization of alpha-glucan chains; and (ii) the evolution of novel types of polysaccharide (de)phosphorylating enzymes from preexisting glycogen (de)phosphorylation host pathways to allow the turnover of such crystals. We speculate that the transition to starch benefitted Archaeplastida in three ways: more carbon could be packed into osmotically inert material; the host could resume control of carbon assimilation from the chlamydial pathogen that triggered plastid endosymbiosis; and cyanobacterial photosynthate export could be integrated in the emerging Archaeplastida. KW - evolution of plastids KW - starch and glycogen metabolism KW - polyglucan debranching reactions KW - starch and glycogen (de)phosphorylation KW - Chlamydia-like bacteria KW - Lafora disease Y1 - 2014 U6 - https://doi.org/10.1016/j.tplants.2013.08.004 SN - 1360-1385 VL - 19 IS - 1 SP - 18 EP - 28 PB - Elsevier CY - London ER -