TY - JOUR A1 - Kroh, Daniel A1 - Eller, Fabian A1 - Schötz, Konstantin A1 - Wedler, Stefan A1 - Perdigón-Toro, Lorena A1 - Freychet, Guillaume A1 - Wei, Qingya A1 - Dörr, Maximilian A1 - Jones, David A1 - Zou, Yingping A1 - Herzig, Eva M. A1 - Neher, Dieter A1 - Köhler, Anna T1 - Identifying the signatures of intermolecular interactions in blends of PM6 with Y6 and N4 using absorption spectroscopy JF - Advanced functional materials N2 - In organic solar cells, the resulting device efficiency depends strongly on the local morphology and intermolecular interactions of the blend film. Optical spectroscopy was used to identify the spectral signatures of interacting chromophores in blend films of the donor polymer PM6 with two state-of-the-art nonfullerene acceptors, Y6 and N4, which differ merely in the branching point of the side chain. From temperature-dependent absorption and luminescence spectroscopy in solution, it is inferred that both acceptor materials form two types of aggregates that differ in their interaction energy. Y6 forms an aggregate with a predominant J-type character in solution, while for N4 molecules the interaction is predominantly in a H-like manner in solution and freshly spin-cast film, yet the molecules reorient with respect to each other with time or thermal annealing to adopt a more J-type interaction. The different aggregation behavior of the acceptor materials is also reflected in the blend films and accounts for the different solar cell efficiencies reported with the two blends. KW - charge-transfer states KW - Frank-Condon analysis KW - morphology KW - organic solar cells Y1 - 2022 U6 - https://doi.org/10.1002/adfm.202205711 SN - 1616-301X SN - 1616-3028 VL - 32 IS - 44 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Pranav, Manasi A1 - Benduhn, Johannes A1 - Nyman, Mathias A1 - Hosseini, Seyed Mehrdad A1 - Kublitski, Jonas A1 - Shoaee, Safa A1 - Neher, Dieter A1 - Leo, Karl A1 - Spoltore, Donato T1 - Enhanced charge selectivity via anodic-C60 layer reduces nonradiative losses in organic solar cells JF - ACS applied materials & interfaces N2 - Interfacial layers in conjunction with suitable charge-transport layers can significantly improve the performance of optoelectronic devices by facilitating efficient charge carrier injection and extraction. This work uses a neat C-60 interlayer on the anode to experimentally reveal that surface recombination is a significant contributor to nonradiative recombination losses in organic solar cells. These losses are shown to proportionally increase with the extent of contact between donor molecules in the photoactive layer and a molybdenum oxide (MoO3) hole extraction layer, proven by calculating voltage losses in low- and high-donor-content bulk heterojunction device architectures. Using a novel in-device determination of the built-in voltage, the suppression of surface recombination, due to the insertion of a thin anodic-C-60 interlayer on MoO3, is attributed to an enhanced built-in potential. The increased built-in voltage reduces the presence of minority charge carriers at the electrodes-a new perspective on the principle of selective charge extraction layers. The benefit to device efficiency is limited by a critical interlayer thickness, which depends on the donor material in bilayer devices. Given the high popularity of MoO3 as an efficient hole extraction and injection layer and the increasingly popular discussion on interfacial phenomena in organic optoelectronic devices, these findings are relevant to and address different branches of organic electronics, providing insights for future device design. KW - nonradiative losses KW - molybdenum oxide KW - organic solar cells KW - interfacial layers KW - charge selectivity Y1 - 2021 U6 - https://doi.org/10.1021/acsami.1c00049 SN - 1944-8244 SN - 1944-8252 VL - 13 IS - 10 SP - 12603 EP - 12609 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Phuong, Le Quang A1 - Hosseini, Seyed Mehrdad A1 - Sandberg, Oskar J. A1 - Zou, Yingping A1 - Woo, Han Young A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1384 KW - nonfullerene acceptors KW - organic solar cells KW - quasi-Fermi level KW - splitting KW - quasi-steady-state photoinduced absorptions KW - surface KW - recombinations KW - voltage losses Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-570018 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Perdigon-Toro, Lorena A1 - Zhang, Huotian A1 - Markina, Anastaa si A1 - Yuan, Jun A1 - Hosseini, Seyed Mehrdad A1 - Wolff, Christian Michael A1 - Zuo, Guangzheng A1 - Stolterfoht, Martin A1 - Zou, Yingping A1 - Gao, Feng A1 - Andrienko, Denis A1 - Shoaee, Safa A1 - Neher, Dieter T1 - Barrierless free charge generation in the high-performance PM6:Y6 bulk heterojunction non-fullerene solar cell JF - Advanced materials N2 - Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier. KW - driving force KW - non-fullerene acceptors KW - organic solar cells KW - photocurrent generation Y1 - 2020 U6 - https://doi.org/10.1002/adma.201906763 SN - 0935-9648 SN - 1521-4095 VL - 32 IS - 9 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Shoaee, Safa A1 - Sanna, Anna Laura A1 - Sforazzini, Giuseppe T1 - Elucidating charge generation in green-solvent processed organic solar cells JF - Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International N2 - Organic solar cells have the potential to become the cheapest form of electricity. Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule acceptors. Next generation photovoltaics based upon environmentally benign "green solvent" processing of organic semiconductors promise a step-change in the adaptability and versatility of solar technologies and promote sustainable development. However, high-performing OSCs are still processed by halogenated (non-environmentally friendly) solvents, so hindering their large-scale manufacture. In this perspective, we discuss the recent progress in developing highly efficient OSCs processed from eco-compatible solvents, and highlight research challenges that should be addressed for the future development of high power conversion efficiencies devices. KW - organic solar cells KW - green solvents KW - non-halogenated solvents KW - exaction KW - diffusion KW - photoluminescence quenching Y1 - 2021 U6 - https://doi.org/10.3390/molecules26247439 SN - 1420-3049 VL - 26 IS - 24 PB - MDPI CY - Basel ER - TY - JOUR A1 - Vollbrecht, Joachim A1 - Brus, Viktor V. T1 - Effects of recombination order on open-circuit voltage decay measurements of organic and perovskite solar cells JF - Energies : open-access journal of related scientific research, technology development and studies in policy and management / Molecular Diversity Preservation International (MDPI) N2 - Non-geminate recombination, as one of the most relevant loss mechanisms in organic and perovskite solar cells, deserves special attention in research efforts to further increase device performance. It can be subdivided into first, second, and third order processes, which can be elucidated by the effects that they have on the time-dependent open-circuit voltage decay. In this study, analytical expressions for the open-circuit voltage decay exhibiting one of the aforementioned recombination mechanisms were derived. It was possible to support the analytical models with experimental examples of three different solar cells, each of them dominated either by first (PBDBT:CETIC-4F), second (PM6:Y6), or third (irradiated CH3NH3PbI3) order recombination. Furthermore, a simple approach to estimate the dominant recombination process was also introduced and tested on these examples. Moreover, limitations of the analytical models and the measurement technique itself were discussed. KW - organic solar cells KW - perovskite solar cells KW - non-geminate recombination KW - recombination order KW - open-circuit voltage decay Y1 - 2021 U6 - https://doi.org/10.3390/en14164800 SN - 1996-1073 VL - 14 IS - 16 PB - MDPI CY - Basel ER - TY - JOUR A1 - Phuong, Le Quang A1 - Hosseini, Seyed Mehrdad A1 - Sandberg, Oskar J. A1 - Zou, Yingping A1 - Woo, Han Young A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells JF - Solar RRL N2 - The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells. KW - nonfullerene acceptors KW - organic solar cells KW - quasi-Fermi level KW - splitting KW - quasi-steady-state photoinduced absorptions KW - surface KW - recombinations KW - voltage losses Y1 - 2020 U6 - https://doi.org/10.1002/solr.202000649 SN - 2367-198X VL - 5 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Perdigón-Toro, Lorena T1 - On the Generation and Fate of Free Carriers in Non-Fullerene Acceptor Organic Solar Cells N2 - Organic solar cells offer an efficient and cost-effective alternative for solar energy harvesting. This type of photovoltaic cell typically consists of a blend of two organic semiconductors, an electron donating polymer and a low molecular weight electron acceptor to create what is known as a bulk heterojunction (BHJ) morphology. Traditionally, fullerene-based acceptors have been used for this purpose. In recent years, the development of new acceptor molecules, so-called non-fullerene acceptors (NFA), has breathed new life into organic solar cell research, enabling record efficiencies close to 19%. Today, NFA-based solar cells are approaching their inorganic competitors in terms of photocurrent generation, but lag in terms of open circuit voltage (V_OC). Interestingly, the V_OC of these cells benefits from small offsets of orbital energies at the donor-NFA interface, although previous knowledge considered large energy offsets to be critical for efficient charge carrier generation. In addition, there are several other electronic and structural features that distinguish NFAs from fullerenes. My thesis focuses on understanding the interplay between the unique attributes of NFAs and the physical processes occurring in solar cells. By combining various experimental techniques with drift-diffusion simulations, the generation of free charge carriers as well as their recombination in state-of-the-art NFA-based solar cells is characterized. For this purpose, solar cells based on the donor polymer PM6 and the NFA Y6 have been investigated. The generation of free charge carriers in PM6:Y6 is efficient and independent of electric field and excitation energy. Temperature-dependent measurements show a very low activation energy for photocurrent generation (about 6 meV), indicating barrierless charge carrier separation. Theoretical modeling suggests that Y6 molecules have large quadrupole moments, leading to band bending at the donor-acceptor interface and thereby reducing the electrostatic Coulomb dissociation barrier. In this regard, this work identifies poor extraction of free charges in competition with nongeminate recombination as a dominant loss process in PM6:Y6 devices. Subsequently, the spectral characteristics of PM6:Y6 solar cells were investigated with respect to the dominant process of charge carrier recombination. It was found that the photon emission under open-circuit conditions can be almost entirely attributed to the occupation and recombination of Y6 singlet excitons. Nevertheless, the recombination pathway via the singlet state contributes only 1% to the total recombination, which is dominated by the charge transfer state (CT-state) at the donor-acceptor interface. Further V_OC gains can therefore only be expected if the density and/or recombination rate of these CT-states can be significantly reduced. Finally, the role of energetic disorder in NFA solar cells is investigated by comparing Y6 with a structurally related derivative, named N4. Layer morphology studies combined with temperature-dependent charge transport experiments show significantly lower structural and energetic disorder in the case of the PM6:Y6 blend. For both PM6:Y6 and PM6:N4, disorder determines the maximum achievable V_OC, with PM6:Y6 benefiting from improved morphological order. Overall, the obtained findings point to avenues for the realization of NFA-based solar cells with even smaller V_OC losses. Further reduction of nongeminate recombination and energetic disorder should result in organic solar cells with efficiencies above 20% in the future. N2 - Organische Solarzellen bieten eine effiziente und kostengünstige Alternative für die Nutzung von Sonnenenergie. Bei dieser Art von Photovoltaikzellen werden in der Regel zwei organische Halbleiter, ein elektronenspendendes Polymer und ein niedermolekularer Elektronenakzeptor gemischt, um eine sogenannte „Bulk-Heterojunction“ (BHJ)-Morphologie zu erzeugen. Traditionell wurden hierfür Fulleren-basierte Akzeptoren verwendet. In den letzten Jahren hat die Entwicklung neuer Akzeptor-Moleküle, so genannter Nicht-Fulleren-Akzeptoren (NFA), der organischen Solarzellenforschung neues Leben eingehaucht und damit Rekordwirkungsgrade >19 % ermöglicht. Heutzutage nähern sich NFA-basierte Solarzellen ihren anorganischen Konkurrenten bezüglich der Photostromerzeugung an, nicht jedoch im Hinblick auf die Leerlaufspannung (V_OC). Interessanterweise profitiert der V_OC dieser Zellen von kleinen Offsets der Orbitalenergien an der Donor-NFA-Grenzfläche, obwohl nach bisherigem Wissen große Energieoffsets als entscheidend für die effiziente Ladungsträgergenerierung an der Heterogrenzfläche galten. Darüber hinaus gibt es eine Reihe weiterer elektronischer und struktureller Merkmale, die NFAs von Fullerenen unterscheiden. Meine Dissertation konzentriert sich auf ein tiefgreifendes Verständnis des Zusammenspiels der einzigartigen Eigenschaften von NFAs und den physikalischen Prozessen in daraus hergestellten Solarzellen. Durch die Kombination verschiedener experimenteller Techniken mit Drift-Diffusions-Simulationen wird die Erzeugung freier Ladungsträger sowie deren Rekombination in modernen NFA-basierten Solarzellen charakterisiert. Zu diesem Zweck wurden Solarzellen auf Basis des Donor-Polymers PM6 und des NFA Y6 untersucht. Die Erzeugung freier Ladungsträger in PM6:Y6 erweist sich dabei als effizient und unabhängig von elektrischem Feld und Anregungsenergie. Temperaturabhängige Messungen zeigen eine sehr geringe Aktivierungsenergie für die Photostromerzeugung (ca. 6 meV), was auf eine barrierefreie Ladungsträgertrennung hinweist. Theoretische Modellierungen legen nahe, dass Y6-Moleküle große Quadrupolmomente aufweisen, was zu einer Bandverbiegung an der Donor-Akzeptor-Grenzfläche führt und dabei die elektrostatische Coulombsch-Dissoziationsbarriere reduziert. In dieser Hinsicht identifiziert diese Arbeit die schlechte Extraktion freier Ladungen in Konkurrenz zur „nongeminalen“ Rekombination als einen dominanten Verlustprozess in PM6:Y6 Zellen. In weiterer Folge wurden die spektralen Eigenschaften von PM6:Y6-Solarzellen im Hinblick auf den dominanten Prozess der Ladungsträgergenerierung und rekombination untersucht. Es zeigte sich, dass die Photonenemission unter Leerlaufbedingungen fast vollständig auf die Besetzung und Rekombination von Y6-Singlet-Exzitonen zurückgeführt werden kann. Trotzdem trägt der Rekombinationspfad über den Singlett-Zustand nur zu 1 % zur gesamten Rekombination bei, die über den Ladungstransfer-Zustand (CT-state) an der Donor-Akzeptor-Grenzfläche dominiert wird. Weitere V_OC Gewinne sind daher nur zu erwarten, wenn die Dichte und/oder die Rekombinationsrate dieser CT-Zustände erheblich reduziert werden kann. Schließlich wird die Rolle der energetischen Unordnung in NFA-Solarzellen durch den Vergleich von Y6 mit einem strukturverwandten Derivat, genannt N4, untersucht. Untersuchungen zur Schichtmorphologie in Kombination mit Experimenten zum temperaturabhängigen Ladungstransport zeigen eine deutlich geringere strukturelle und energetische Unordnung im Fall des PM6:Y6 Blends. Sowohl für PM6:Y6 als auch für PM6:N4 bestimmt die Unordnung den maximal erreichbaren V_OC, wobei PM6:Y6 von der verbesserten morphologischen Ordnung profitiert. Insgesamt weisen die gewonnenen Erkenntnisse Wege für die Realisierung von NFA-basierten Solarzellen mit noch kleineren V_OC-Verlusten auf. Durch die weitere Reduzierung der „nongeminaten“ Rekombination als auch der energetischen Unordnung sollten in Zukunft organische Solarzellen mit einem Wirkungsgrad von über 20 % möglich werden. T2 - Über die Photogenerierung und Rekombination freier Ladungsträger in organischen Solarzellen mit Nicht-Fulleren-Akzeptoren KW - organic solar cells KW - non-fullerene acceptors KW - free charge generation KW - free charge recombination KW - energetic disorder KW - organic semiconductors KW - energetische Unordnung KW - Generierung freier Ladungsträger KW - freie Ladungsträger Rekombination KW - Nicht-Fulleren-Akzeptoren KW - organische Halbleiter KW - organische Solarzellen Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-558072 ER - TY - JOUR A1 - Zhang, Kai A1 - Chen, Zhiming A1 - Armin, Ardalan A1 - Dong, Sheng A1 - Xia, Ruoxi A1 - Yip, Hin-Lap A1 - Shoaee, Safa A1 - Huang, Fei A1 - Cao, Yong T1 - Efficient large area organic solar cells processed by blade-coating with single-component green solvent JF - Solar Rrl N2 - While the performance of laboratory-scale organic solar cells (OSCs) continues to grow, development of high efficiency large area OSCs remains a big challenge. Although a few attempts to produce large area organic solar cells (OSCs) have been reported, there are still challenges on the way to realizing efficient module devices, such as the low compatibility of the thickness-sensitive active layer with large area coating techniques, the frequent need for toxic solvents and tedious optimization processes used during device fabrication. In this work, highly efficient thickness-insensitive OSCs based on PTB7-Th:PC71BM that processed with single-component green solvent 2-methylanisole are presented, in which both junction thickness limitation and solvent toxicity issues are simultaneously addressed. Careful investigation reveals that this green solvent prevents the evolution of PC71BM into large area clusters resulting in reduced charge carrier recombination, and largely eliminates trapping centers, and thus improves the thickness tolerance of the films. These findings enable us to address the scalability and solvent toxicity issues and to fabricate a 16 cm(2) OSC with doctor-blade coating with a state-of-the-art power conversion efficiency of 7.5% using green solvent. KW - doctor-blade coating KW - green solvents KW - large area devices KW - organic solar cells KW - thickness insensitive active layers Y1 - 2017 U6 - https://doi.org/10.1002/solr.201700169 SN - 2367-198X VL - 2 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ran, Niva A. A1 - Love, John A. A1 - Heiber, Michael C. A1 - Jiao, Xuechen A1 - Hughes, Michael P. A1 - Karki, Akchheta A1 - Wang, Ming A1 - Brus, Viktor V. A1 - Wang, Hengbin A1 - Neher, Dieter A1 - Ade, Harald A1 - Bazan, Guillermo C. A1 - Thuc-Quyen Nguyen, T1 - Charge generation and recombination in an organic solar cell with low energetic offsets JF - dvanced energy materials N2 - Organic bulk heterojunction (BHJ) solar cells require energetic offsets between the donor and acceptor to obtain high short-circuit currents (J(SC)) and fill factors (FF). However, it is necessary to reduce the energetic offsets to achieve high open-circuit voltages (V-OC). Recently, reports have highlighted BHJ blends that are pushing at the accepted limits of energetic offsets necessary for high efficiency. Unfortunately, most of these BHJs have modest FF values. How the energetic offset impacts the solar cell characteristics thus remains poorly understood. Here, a comprehensive characterization of the losses in a polymer:fullerene BHJ blend, PIPCP:phenyl-C61-butyric acid methyl ester (PC61BM), that achieves a high V-OC (0.9 V) with very low energy losses (E-loss = 0.52 eV) from the energy of absorbed photons, a respectable J(SC) (13 mA cm(-2)), but a limited FF (54%) is reported. Despite the low energetic offset, the system does not suffer from field-dependent generation and instead it is characterized by very fast nongeminate recombination and the presence of shallow traps. The charge-carrier losses are attributed to suboptimal morphology due to high miscibility between PIPCP and PC61BM. These results hold promise that given the appropriate morphology, the J(SC), V-OC, and FF can all be improved, even with very low energetic offsets. KW - energetic offset KW - fill factor KW - morphology KW - organic solar cells KW - recombination Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201701073 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 5 PB - Wiley-VCH CY - Weinheim ER -