TY - JOUR A1 - Nexer, Maelle A1 - Authemayou, Christine A1 - Schildgen, Taylor F. A1 - Hantoro, Wahyoe S. A1 - Molliex, Stephane A1 - Delcaillau, Bernard A1 - Pedoja, Kevin A1 - Husson, Laurent A1 - Regard, Vincent T1 - Evaluation of morphometric proxies for uplift on sequences of coral reef terraces: A case study from Sumba Island (Indonesia) JF - Geomorphology : an international journal on pure and applied geomorphology N2 - Sequences of coral reef terraces characterized by staircase morphologies and a homogeneous lithology make them appropriate to isolate the influence of uplift on drainage morphology. Along the northern coast of Sumba Island, Indonesia, we investigated the correlations between landscape morphology and uplift rates, which range from 0.02 to 0.6 mm.yr(-1). We studied eight morphometric indices at two scales: whole island (similar to 11,000 km(2)) and within sequences of reefal terraces (similar to 3000 km(2)). At the latter scale, we extracted morphometric indices for 15 individual catchments draining mostly the reefal terraces and for 30 areas undergoing specific ranges of uplift rates draining only the reefal terraces. Indices extracted from digital elevation models include residual relief, incision, stream gradient indices (SL and k(sn)), the hypsometric integral, drainage area, mean relief, and the shape factor. We find that SL, the hypsometric integral, mean relief and the shape factor of catchments positively correlate with uplift rates, whereas incision, residual relief, and k(sn) do not. More precisely, we find that only the areas that are uplifting at a rate faster than 03 mm.yr(-1) can yield the extreme values for these indices, implying that these extreme values are indicative of fast uplifting areas. However, the relationship is not bivalent because any uplift rate can be associated with low values of the same indices. For all indices, the transient conditions of the drainage influence the correlation with Pleistocene mean uplift rates, illustrating the necessity to extract morphometric indices with an appropriate choice of catchment scale. This type of analysis helps to identify the morphometric indices that are most useful for tectonic analysis in areas of unknown uplift, allowing for easy identification of short spatial variations of uplift rate and detection of areas with relatively fast uplift rates in unstudied coastal zones. (C) 2015 Elsevier B.V. All rights reserved. KW - Drainage morphometry KW - Coral reef terraces KW - Uplift KW - Pleistocene KW - Sumba Island KW - Indonesia Y1 - 2015 U6 - https://doi.org/10.1016/j.geomorph.2015.03.036 SN - 0169-555X SN - 1872-695X VL - 241 SP - 145 EP - 159 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pedoja, Kevin A1 - Husson, Laurent A1 - Johnson, Markes E. A1 - Melnick, Daniel A1 - Witt, Cesar A1 - Pochat, Stephane A1 - Nexer, Maelle A1 - Delcaillau, Bernard A1 - Pinegina, Tatiana A1 - Poprawski, Yohann A1 - Authemayou, Christine A1 - Elliot, Mary A1 - Regard, Vincent A1 - Garestier, Franck T1 - Coastal staircase sequences reflecting sea-level oscillations and tectonic uplift during the Quaternary and Neogene JF - Earth science reviews : the international geological journal bridging the gap between research articles and textbooks N2 - Many coasts feature sequences of Quaternary and Neogene shorelines that are shaped by a combination of sea-level oscillations and tectonics. We compiled a global synthesis of sea-level changes for the following highstands: MIS 1, MIS 3, MIS 5e and MIS 11. Also, we date the apparent onset of sequences of paleoshorelines either from published data or tentatively extrapolating an age for the uppermost, purported oldest shoreline in each sequence. Including the most documented MIS 5e benchmark, we identify 926 sequences out of which 185 also feature Holocene shorelines. Six areas are identified where elevations of the MIS 3 shorelines are known, and 31 feature elevation data for MIS 11 shorelines. Genetic relationships to regional geodynamics are further explored based on the elevations of the MIS 5e benchmark. Mean apparent uplift rates range from 0.01 0.01 mm/yr (hotspots) to 1.47 0.08 mm/yr (continental collision). Passive margins appear as ubiquitously uplifting, while tectonic segmentation is more important on active margins. From the literature and our extrapolations, we infer ages for the onset of formation for -180 coastal sequences. Sea level fingerprinting on coastal sequences started at least during mid Miocene and locally as early as Eocene. Whether due to the changes in the bulk volume of seawater or to the temporal variations in the shape of ocean basins, estimates of eustasy fail to explain the magnitude of the apparent sea level drop. Thus, vertical ground motion is invoked, and we interpret the longlasting development of those paleoshore sequences as the imprint of glacial cycles on globally uplifted margins in response to continental compression. The geomorphological expression of the sequences matches the amplitude and frequency of glacial cyclicity. From middle Pleistocene to present-day, moderately fast (100,000 yrs) oscillating sea levels favor the development of well identified strandlines that are distinct from one another. Pliocene and Lower Pleistocene strandlines associated with faster cyclicity (40,000 yrs) are more compact and easily merge into rasas, whereas older Cenozoic low-frequency eustatic changes generally led to widespread flat-lying coastal plains. KW - Cenozoic KW - Coastal sequence of shorelines KW - Strandlines KW - Rasa KW - Geodynamic Y1 - 2014 U6 - https://doi.org/10.1016/j.earscirev.2014.01.007 SN - 0012-8252 SN - 1872-6828 VL - 132 SP - 13 EP - 38 PB - Elsevier CY - Amsterdam ER -