Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-7622 Wissenschaftlicher Artikel Unterberg, Marlies; Leffers, Larissa; Hübner, Florian; Humpf, Hans-Ulrich; Lepikhov, Konstantin; Walter, Jörn; Ebert, Franziska; Schwerdtle, Tanja Toxicity of arsenite and thio-DMAV after long-term (21 days) incubation of human urothelial cells: cytotoxicity, genotoxicity and epigenetics This study aims to further mechanistically understand toxic modes of action after chronic inorganic arsenic exposure. Therefore long-term incubation studies in cultured cells were carried out, to display chronically attained changes, which cannot be observed in the generally applied in vitro short-term incubation studies. Particularly, the cytotoxic, genotoxic and epigenetic effects of an up to 21 days incubation of human urothelial (UROtsa) cells with pico- to nanomolar concentrations of iAsIII and its metabolite thio-DMAV were compared. After 21 days of incubation, cytotoxic effects were strongly enhanced in the case of iAsIII and might partly be due to glutathione depletion and genotoxic effects on the chromosomal level. These results are in strong contrast to cells exposed to thio-DMAV. Thus, cells seemed to be able to adapt to this arsenical, as indicated among others by an increase in the cellular glutathione level. Most interestingly, picomolar concentrations of both iAsIII and thio-DMAV caused global DNA hypomethylation in UROtsa cells, which was quantified in parallel by 5-medC immunostaining and a newly established, reliable, high resolution mass spectrometry (HRMS)-based test system. This is the first time that epigenetic effects are reported for thio-DMAV; iAsIII induced epigenetic effects occur in at least 8000 fold lower concentrations as reported in vitro before. The fact that both arsenicals cause DNA hypomethylation at really low, exposure-relevant concentrations in human urothelial cells suggests that this epigenetic effect might contribute to inorganic arsenic induced carcinogenicity, which for sure has to be further investigated in future studies. Cambridge Royal Society of Chemistry 2014 9 Toxicology Research 3 6 456 464 Institut für Chemie OPUS4-7436 Wissenschaftlicher Artikel Pieper, Imke; Wehe, Christoph A.; Bornhorst, Julia; Ebert, Franziska; Leffers, Larissa; Holtkamp, Michael; Höseler, Pia; Weber, Till; Mangerich, Aswin; Bürkle, Alexander; Karst, Uwe; Schwerdtle, Tanja Mechanisms of Hg species induced toxicity in cultured human astrocytes The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co-genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl)ation contributes to organic Hg induced neurotoxicity. 2014 10 Metallomics 2014 6 662 671 10.1039/c3mt00337j Institut für Chemie OPUS4-38305 Wissenschaftlicher Artikel Pieper, Imke; Wehe, Christoph A.; Bornhorst, Julia; Ebert, Franziska; Leffers, Larissa; Holtkamp, Michael; Hoeseler, Pia; Weber, Till; Mangerich, Aswin; Buerkle, Alexander; Karst, Uwe; Schwerdtle, Tanja Mechanisms of Hg species induced toxicity in cultured human astrocytes: genotoxicity and DNA-damage response The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co- genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl) ation contributes to organic Hg induced neurotoxicity. Cambridge Royal Society of Chemistry 2014 10 Metallomics : integrated biometal science 6 3 662 671 10.1039/c3mt00337j Institut für Ernährungswissenschaft OPUS4-37458 Wissenschaftlicher Artikel Unterberg, Marlies; Leffers, Larissa; Huebner, Florian; Humpf, Hans-Ulrich; Lepikhov, Konstantin; Walter, Joern; Ebert, Franziska; Schwerdtle, Tanja Toxicity of arsenite and thio-DMA(V) after long-term (21 days) incubation of human urothelial cells: cytotoxicity, genotoxicity and epigenetics This study aims to further mechanistically understand toxic modes of action after chronic inorganic arsenic exposure. Therefore long-term incubation studies in cultured cells were carried out, to display chronically attained changes, which cannot be observed in the generally applied in vitro short-term incubation studies. Particularly, the cytotoxic, genotoxic and epigenetic effects of an up to 21 days incubation of human urothelial (UROtsa) cells with pico- to nanomolar concentrations of iAs(III) and its metabolite thio-DMA(V) were compared. After 21 days of incubation, cytotoxic effects were strongly enhanced in the case of iAs(III) and might partly be due to glutathione depletion and genotoxic effects on the chromosomal level. These results are in strong contrast to cells exposed to thio-DMA(V). Thus, cells seemed to be able to adapt to this arsenical, as indicated among others by an increase in the cellular glutathione level. Most interestingly, picomolar concentrations of both iAs(III) and thio-DMA(V) caused global DNA hypomethylation in UROtsa cells, which was quantified in parallel by 5-medC immunostaining and a newly established, reliable, high resolution mass spectrometry (HRMS)-based test system. This is the first time that epigenetic effects are reported for thio-DMA(V); iAs(III) induced epigenetic effects occur in at least 8000 fold lower concentrations as reported in vitro before. The fact that both arsenicals cause DNA hypomethylation at really low, exposure-relevant concentrations in human urothelial cells suggests that this epigenetic effect might contribute to inorganic arsenic induced carcinogenicity, which for sure has to be further investigated in future studies. Cambridge Royal Society of Chemistry 2014 9 Toxicology research 3 6 456 464 10.1039/c4tx00036f Institut für Ernährungswissenschaft OPUS4-45744 Wissenschaftlicher Artikel Ebert, Franziska; Meyer, Sören; Leffers, Larissa; Raber, Georg; Francesconi, Kevin A.; Schwerdtle, Tanja Toxicological characterisation of a thio-arsenosugar-glycerol in human cells Arsenosugars are water-soluble arsenic species predominant in marine algae and other seafood including mussels and oysters. They typically occur at levels ranging from 2 to 50 mg arsenic/kg dry weight. Most of the arsenosugars contain arsenic as a dimethylarsinoyl group (Me2As(O)-), commonly referred to as the oxo forms, but thio analogues have also been identified in marine organisms and as metabolic products of oxo-arsenosugars. So far, no data regarding toxicity and toxicokinetics of thio-arsenosugars are available. This in vitro-based study indicates that thio-dimethylarsenosugar-glycerol exerts neither pronounced cytotoxicity nor genotoxicity even though this arsenical was bioavailable to human hepatic (HepG2) and urothelial (UROtsa) cells. Experiments with the Caco-2 intestinal barrier model mimicking human absorption indicate for the thio-arsenosugar-glycerol higher intestinal bioavailability as compared to the oxo-arsenosugars. Nevertheless, absorption estimates were much lower in comparison to other arsenicals including arsenite and arsenic-containing hydrocarbons. Arsenic speciation in cell lysates revealed that HepG2 cells are able to metabolise the thio-arsenosugar-glycerol to some extent to dimethylarsinic acid (DMA). These first in vitro data cannot fully exclude risks to human health related to the presence of thio-arsenosugars in food. (C) 2016 Elsevier GmbH. All rights reserved. Jena Springer Publishing Company 2016 7 Journal of trace elements in medicine and biology 38 150 156 10.1016/j.jtemb.2016.04.013 Institut für Ernährungswissenschaft