Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-31392 Wissenschaftlicher Artikel Mehdaoui, Imed; Kröner, Dominik; Pykavy, Mikhail; Freund, H.-J.; Klüner, Thorsten Photo-induced desorption of NO from NiO(100): calculation of the four-dimensional potential energy surfaces and systematic wave packet studies The velocity distributions of the laser-induced desorption of NO molecules from an epitaxially grown film of NiO(100) on Ni(100) have been studied [ Mull et al., J. Chem. Phys., 1992, 96, 7108]. A pronounced bimodality of velocity distributions has been found, where the NO molecules desorbing with higher velocities exhibit a coupling to the rotational quantum states J. In this article we present simulations of state resolved velocity distributions on a full ab initio level. As a basis for this quantum mechanical treatment a 4D potential energy surface (PES) was constructed for the electronic ground and a representative excited state, using a NiO5Mg1318+ cluster. The PESs of the electronic ground and an excited state were calculated at the CASPT2 and the configuration interaction (CI) level of theory, respectively. Multi-dimensional quantum wave packet simulations on these two surfaces were performed for different sets of degrees of freedom. Our key finding is that at least a 3D wave packet simulation, in which the desorption coordinate Z, polar angle theta and lateral coordinate X are included, is necessary to allow the simulation of experimental velocity distributions. Analysis of the wave packet dynamics demonstrates that essentially the lateral coordinate, which was neglected in previous studies [Kluner et al., Phys. Rev. Lett. 1998, 80, 5208], is responsible for the experimentally observed bimodality. An extensive analysis shows that the bimodality is due to a bifurcation of the wave packet on the excited state PES, where the motion of the molecule parallel to the surface plays a decisive role 2006 10.1039/B512778e Institut für Physik und Astronomie OPUS4-37473 Wissenschaftlicher Artikel Goetze, Jan P.; Kröner, Dominik; Banerjee, Shiladitya; Karasulu, Bora; Thiel, Walter Carotenoids as a shortcut for chlorophyll Soret-to-Q band energy flow It is proposed that xanthophylls, and carotenoids in general, may assist in energy transfer from the chlorophyll Soret band to the Q band. Ground-state (1A(g)) and excited-state (1B(u)) optimizations of violaxanthin (Vx) and zeaxanthin (Zx) are performed in an environment mimicking the light-harvesting complex II (LHCII), including the closest chlorophyll b molecule (Chl). Time-dependent density functional theory (TD-DFT, CAM-B3LYP functional) is used in combination with a semi-empirical description to obtain the excited-state geometries, supported by additional DFT/multireference configuration interaction calculations, with and without point charges representing LHCII. In the ground state, Vx and Zx show similar properties. At the 1B(u) minimum, the energy of the Zx 1Bu state is below the Chl Q band, in contrast to Vx. Both Vx and Zx may act as acceptors of Soret-state energy; transfer to the Q band seems to be favored for Vx. These findings suggest that carotenoids may generally mediate Soret-to-Q energy flow in LHCII. Weinheim Wiley-VCH 2014 10 ChemPhysChem : a European journal of chemical physics and physical chemistry 15 15 3391 3400 10.1002/cphc.201402233 Institut für Chemie OPUS4-35972 Wissenschaftlicher Artikel Kröner, Dominik; Götze, Jan Philipp Modeling of a violaxanthin-chlorophyll b chromophore pair in its LHCII environment using CAM-B3LYP Collecting energy for photosystem II is facilitated by several pigments, xanthophylls and chlorophylls, embedded in the light harvesting complex II (LHCII). One xanthophyll, violaxanthin (Vio), is loosely bound at a site close to a chlorophyll b (Chl). No final answer has yet been found for the role of this specific xanthophyll. We study the electronic structure of Vio in the presence of Chl and under the influence of the LHCII environment, represented by a point charge field (PCF). We compare the capability of the long range corrected density functional theory (DFT) functional CAM-B3LYP to B3LYP for the modeling of the UV/vis spectrum of the Vio + Chl pair. CAM-B3LYP was reported to allow for a very realistic reproduction of bond length alternation of linear polyenes, which has considerable impact on the carotenoid structure and spectrum. To account for the influence of the LHCII environment, the chromophore geometries are optimized using an ONIOM(DFT/6-31G(d):PM6) scheme. Our calculations show that the energies of the locally excited states are almost unaffected by the presence of the partner chromophore or the PCF. There are, however, indications for excitonic coupling of the Chl Soret band and Vio. We propose that Vio may accept energy from blue-light excited Chl. Lausanne Elsevier 2012 8 Journal of photochemistry and photobiology : B, Biology 109 2 12 19 10.1016/j.jphotobiol.2011.12.007 Institut für Chemie OPUS4-36508 Wissenschaftlicher Artikel Kröner, Dominik; Krüger, Hartmut; Thesen, Manuel W. Electronic structure calculations for Hole-Transporting Triphenylamine Derivatives in Polymer Light-Emitting Diodes Hole-transporting polymers based on polyethene-triphenylamine derivatives are investigated with respect to their UV/Vis spectra. Two substituents, N-phenyl-1-naphthylamine and carbazole, are examined as their respective polymer light-emitting diodes (PLEDs) show very different luminous efficiencies. In order to identify the origin of these phenomena electronic structure calculations based on TD-DFT were performed using monomer models of the hole-transporting polymers. In experiment these hole-transporting polymers show very specific differences in their absorption and emission (fluorescence and phosphorescence) spectra. The analysis of the simulated absorption and emission spectra, the MOs as well as the ground and excited state geometries give explanations for the different optical performances of the corresponding PLEDs. Malden Wiley-Blackwell 2011 16 Macromolecular theory and simulations 20 9 790 805 10.1002/mats.201100016 Institut für Chemie OPUS4-36429 Wissenschaftlicher Artikel Kröner, Dominik Chiral distinction by ultrashort laser pulses electron wavepacket dynamics incorporating magnetic interactions The qualitative and quantitative distinction of enantiomers is one of the key issues in chemical analysis. In the last years, circular dichroism (CD) has been combined with laser ionization mass spectrometry (LIMS), applying resonance enhanced multiphoton ionization (REMPI) with ultrashort laser pulses. We present theoretical investigations on the CD in the populations of the first electronic excited state of the REMPI process, caused by the interaction of 3-methylcyclopentanone with either left or right circular polarized fs-laser pulses. For this we performed multistate laser driven many electron dynamics based on ab initio electronic structure calculations, namely, TD-CIS(D)/6-311++(2d,2p). For a theoretical description of these experiments, a complete description of the field-dipole correlation is mandatory, including both electric field electric dipole and magnetic field magnetic dipole interactions. The effect of various pulse parameters on the CD are analyzed and compared with experimental results to gain further understanding of the key elements for an optimal distinction of enantiomers. Washington American Chemical Society 2011 9 The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory 115 50 14510 14518 10.1021/jp207270s Institut für Chemie OPUS4-38669 Wissenschaftlicher Artikel Kröner, Dominik; Gaebel, Tina Circular Dichroism in Mass Spectrometry: Quantum Chemical Investigations for the Differences between (R)-3-Methylcyclopentanone and Its Cation In mass spectrometry enantiomers can be distinguished by multiphoton ionization employing circular polarized laser pulses. The circular dichroism (CD) is detected from the normalized difference in the ion yield after excitation with light of opposite handedness. While there are cases in which fragment and parent ions exhibit the same sign of the CD in the ion yield, several experiments show that they might also differ in sign and magnitude. Supported by experimental observations it has been proposed that the parent ion, once it has been formed, is further excited by the laser, which may result in a change of the CD in the ion yield of the formed fragments compared to the parent ion. To gain a deeper insight in possible excitation pathways we calculated and compared the electronic CD absorption spectra of neutral and cationic (R)-3-methylcyclopentanone, applying density functional theory. In addition, electron wavepacket dynamics were used to compare the CD of one- and two-photon transitions. Our results support the proposed subsequent excitation of the parent ion as a possible origin of the difference of the CD in the ion yield between parent ion and fragments. Washington American Chemical Society 2015 11 The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory 119 34 9167 9177 10.1021/acs.jpca.5b05247 Institut für Chemie OPUS4-8209 Wissenschaftlicher Artikel Kröner, Dominik Laser-driven electron dynamics for circular dichroism in mass spectrometry The distinction of enantiomers is a key aspect of chemical analysis. In mass spectrometry the distinction of enantiomers has been achieved by ionizing the sample with circularly polarized laser pulses and comparing the ion yields for light of opposite handedness. While resonant excitation conditions are expected to be most efficient, they are not required for the detection of a circular dichroism (CD) in the ion yield. However, the prediction of the size and sign of the circular dichroism becomes challenging if non-resonant multiphoton excitations are used to ionize the sample. Employing femtosecond laser pulses to drive electron wavepacket dynamics based on ab initio calculations, we attempt to reveal underlying mechanisms that determine the CD under non-resonant excitation conditions. Simulations were done for (R)-1,2-propylene oxide, using time-dependent configuration interaction singles with perturbative doubles (TD-CIS(D)) and the aug-cc-pVTZ basis set. Interactions between the electric field and the electric dipole and quadrupole as well as between the magnetic field and the magnetic dipole were explicitly accounted for. The ion yield was determined by treating states above the ionization potential as either stationary or non-stationary with energy-dependent lifetimes based on an approved heuristic approach. The observed population dynamics do not allow for a simple interpretation, because of highly non-linear interactions. Still, the various transition pathways are governed by resonant enantiospecific n-photon excitation, with preferably high transition dipole moments, which eventually dominate the CD in the ionized population. Cambridge The Royal Society of Chemistry 2015 13 Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies 29 17 19643 19655 10.1039/C5CP02193F Institut für Chemie OPUS4-8210 misc Kröner, Dominik Laser-driven electron dynamics for circular dichroism in mass spectrometry The distinction of enantiomers is a key aspect of chemical analysis. In mass spectrometry the distinction of enantiomers has been achieved by ionizing the sample with circularly polarized laser pulses and comparing the ion yields for light of opposite handedness. While resonant excitation conditions are expected to be most efficient, they are not required for the detection of a circular dichroism (CD) in the ion yield. However, the prediction of the size and sign of the circular dichroism becomes challenging if non-resonant multiphoton excitations are used to ionize the sample. Employing femtosecond laser pulses to drive electron wavepacket dynamics based on ab initio calculations, we attempt to reveal underlying mechanisms that determine the CD under non-resonant excitation conditions. Simulations were done for (R)-1,2-propylene oxide, using time-dependent configuration interaction singles with perturbative doubles (TD-CIS(D)) and the aug-cc-pVTZ basis set. Interactions between the electric field and the electric dipole and quadrupole as well as between the magnetic field and the magnetic dipole were explicitly accounted for. The ion yield was determined by treating states above the ionization potential as either stationary or non-stationary with energy-dependent lifetimes based on an approved heuristic approach. The observed population dynamics do not allow for a simple interpretation, because of highly non-linear interactions. Still, the various transition pathways are governed by resonant enantiospecific n-photon excitation, with preferably high transition dipole moments, which eventually dominate the CD in the ionized population. 2015 urn:nbn:de:kobv:517-opus4-82109 Institut für Chemie OPUS4-36704 Wissenschaftlicher Artikel Kröner, Dominik; Ehlert, Christopher; Saalfrank, Peter; Holländer, Andreas Ab initio calculations for XPS chemical shifts of poly(vinyl-trifluoroacetate) using trimer models X-ray photoelectron spectra (XPS) of the polymer poly(vinyl-trifluoroacetate) show C(1s) binding energy shifts which are unusual because they are influenced by atoms which are several bonds away from the probed atom. In this work, the influence of the trifluoroacetate substituent on the 1s ionization potential of the carbon atoms of the polyethylene chain is investigated theoretically using mono-substituted, diad and triad models of trimers representing the polymer. Carbon 1s ionization energies are calculated by the Hartree-Fock theory employing Koopmans' theorem. The influence of the configuration and conformation of the functional groups as well as the degree of substitution are found to be important determinants of XPS spectra. It is further found that the 1s binding energy correlates in a linear fashion, with the total electrostatic potential at the position of the probe atom, and depends not only on nearest neighbor effects. This may have implications for the interpretation of high-resolution XP spectra. Amsterdam Elsevier 2011 9 Surface science 605 15-16 1516 1524 10.1016/j.susc.2011.05.021 Institut für Chemie OPUS4-35447 Wissenschaftlicher Artikel Banerjee, Shiladitya; Kröner, Dominik; Saalfrank, Peter Resonance Raman and vibronic absorption spectra with Duschinsky rotation from a time-dependent perspective application to beta-carotene The time-dependent approach to electronic spectroscopy, as popularized by Heller and co-workers in the 1980s, is applied here in conjunction with linear-response, time-dependent density functional theory to study vibronic absorption and resonance Raman spectra of beta-carotene, with and without a solvent. Two-state models, the harmonic and the Condon approximations are used in order to do so. A new code has been developed which includes excited state displacements, vibrational frequency shifts, and Duschinsky rotation, i.e., mode mixing, for both non-adiabatic spectroscopies. It is shown that Duschinsky rotation has a pronounced effect on the resonance Raman spectra of beta-carotene. In particular, it can explain a recently found anomalous behaviour of the so-called nu(1) peak in resonance Raman spectra [N. Tschirner, M. Schenderlein, K. Brose, E. Schlodder, M. A. Mroginski, C. Thomsen, and P. Hildebrandt, Phys. Chem. Chem. Phys. 11, 11471 (2009)], which shifts with the change in excitation wavelength. Melville American Institute of Physics 2012 9 The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr 137 22 10.1063/1.4748147 Institut für Physik und Astronomie OPUS4-39192 Wissenschaftlicher Artikel Ehlert, Christopher; Kröner, Dominik; Saalfrank, Peter A combined quantum chemical/molecular dynamics study of X-ray photoelectron spectra of polyvinyl alcohol using oligomer models X-ray photoelectron spectroscopy (XPS) is a powerful tool for probing the local chemical environment of atoms near surfaces. When applied to soft matter, such as polymers, XPS spectra are frequently shifted and broadened due to thermal atom motion and by interchain interactions. We present a combined quantum mechanical QM/molecular dynamics (MD) simulation of X-ray photoelectron spectra of polyvinyl alcohol (PVA) using oligomer models in order to account for and quantify these effects on the XPS (C1s) signal. In our study, molecular dynamics at finite temperature were performed with a classical forcefield and by ab initio MD (AIMD) using the Car-Parrinello method. Snapshots along, the trajectories represent possible conformers and/or neighbouring environments, with different C1s ionization potentials for individual C atoms leading to broadened XPS peaks. The latter are determined by Delta-Kohn Sham calculations. We also examine the experimental practice of gauging XPS (C1s) signals of alkylic C-atoms in C-containing polymers to the C1s signal of polyethylene. We find that (i) the experimental XPS (C1s) spectra of PVA (position and width) can be roughly represented by single-strand models, (ii) interchain interactions lead to red-shifts of the XPS peaks by about 0.6 eV, and (iii) AIMD simulations match the findings from classical MD semi-quantitatively. Further, (iv) the gauging procedure of XPS (C1s) signals to the values of PE, introduces errors of about 0.5 eV. (C) 2014 Elsevier B.V. All rights reserved. Amsterdam Elsevier 2015 8 Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy 199 38 45 10.1016/j.elspec.2014.12.007 Institut für Chemie OPUS4-36306 Wissenschaftlicher Artikel Klaumünzer, Bastian; Kröner, Dominik; Lischka, Hans; Saalfrank, Peter Non-adiabatic excited state dynamics of riboflavin after photoexcitation Flavins are chromophores in light-gated enzymes and therefore central in many photobiological processes. To unravel the optical excitation process as the initial, elementary step towards signal transduction, detailed ultrafast (femtosecond) experiments probing the photo-activation of flavins have been carried out recently [Weigel et al., J. Phys. Chem. B, 2011, 115, 3656-3680.]. The present paper contributes to a further understanding and interpretation of these experiments by studying the post-excitation vibrational dynamics of riboflavin (RF) and microsolvated riboflavin, RF center dot 4H(2)O, using first principles non-adiabatic molecular dynamics. By analyzing the characteristic atom motions and calculating time-resolved stimulated emission spectra following pi pi* excitation, it is found that after optical excitation C-N and C-C vibrations in the isoalloxazine rings of riboflavin set in. The Franck-Condon (vertically excited) state decays within about 10 fs, in agreement with experiment. Anharmonic coupling leads to Intramolecular Vibrational energy Redistribution (IVR) on the timescale of about 80-100 fs, first to (other) C-C stretching modes of the isoalloxazine rings, then by energy spread over the whole molecule, including low-frequency in-plane modes. The IVR is accompanied by a red-shift and broadening of the emission spectrum. When RF is microsolvated with four water molecules, an overall redshift of optical spectra by about 20 nm is observed but the relaxation dynamics is only slightly affected. For several trajectories, a tendency for hydrogen transfer from water to flavin-nitrogen (N-5) was found. Cambridge Royal Society of Chemistry 2012 10 Physical chemistry, chemical physics : a journal of European Chemical Societies 14 24 8693 8702 10.1039/c2cp40978j Institut für Chemie OPUS4-6800 Habilitation Kröner, Dominik Analysis and control of light-induced processes in molecules: Electron and nuclear quantum dynamics for aspects of stereoisomerism and spectroscopy The habilitation thesis covers theoretical investigations on light-induced processes in molecules. The study is focussed on changes of the molecular electronic structure and geometry, caused either by photoexcitation in the event of a spectroscopic analysis, or by a selective control with shaped laser pulses. The applied and developed methods are predominantly based on quantum chemistry as well as on electron and nuclear quantum dynamics, and in parts on molecular dynamics. The studied scientific problems deal with stereoisomerism and the question of how to either switch or distinguish chiral molecules using laser pulses, and with the essentials for the simulation of the spectroscopic response of biochromophores, in order to unravel their photophysics. The accomplished findings not only explain experimental results and extend existing approaches, but also contribute significantly to the basic understanding of the investigated light-driven molecular processes. The main achievements can be divided in three parts: First, a quantum theory for an enantio- and diastereoselective or, in general, stereoselective laser pulse control was developed and successfully applied to influence the chirality of molecular switches. The proposed axially chiral molecules possess different numbers of "switchable" stable chiral conformations, with one particular switch featuring even a true achiral "off"-state which allows to enantioselectively "turn on" its chirality. Furthermore, surface mounted chiral molecular switches with several well-defined orientations were treated, where a newly devised highly flexible stochastic pulse optimization technique provides high stereoselectivity and efficiency at the same time, even for coupled chirality-changing degrees of freedom. Despite the model character of these studies, the proposed types of chiral molecular switches and, all the more, the developed basic concepts are generally applicable to design laser pulse controlled catalysts for asymmetric synthesis, or to achieve selective changes in the chirality of liquid crystals or in chiroptical nanodevices, implementable in information processing or as data storage. Second, laser-driven electron wavepacket dynamics based on ab initio calculations, namely time-dependent configuration interaction, was extended by the explicit inclusion of magnetic field-magnetic dipole interactions for the simulation of the qualitative and quantitative distinction of enantiomers in mass spectrometry by means of circularly polarized ultrashort laser pulses. The developed approach not only allows to explain the origin of the experimentally observed influence of the pulse duration on the detected circular dichroism in the ion yield, but also to predict laser pulse parameters for an optimal distinction of enantiomers by ultrashort shaped laser pulses. Moreover, these investigations in combination with the previous ones provide a fundamental understanding of the relevance of electric and magnetic interactions between linearly or non-linearly polarized laser pulses and (pro-)chiral molecules for either control by enantioselective excitation or distinction by enantiospecific excitation. Third, for selected light-sensitive biological systems of central importance, like e.g. antenna complexes of photosynthesis, simulations of processes which take place during and after photoexcitation of their chromophores were performed, in order to explain experimental (spectroscopic) findings as well as to understand the underlying photophysical and photochemical principles. In particular, aspects of normal mode mixing due to geometrical changes upon photoexcitation and their impact on (time-dependent) vibronic and resonance Raman spectra, as well as on intramolecular energy redistribution were addressed. In order to explain unresolved experimental findings, a simulation program for the calculation of vibronic and resonance Raman spectra, accounting for changes in both vibrational frequencies and normal modes, was created based on a time-dependent formalism. In addition, the influence of the biochemical environment on the electronic structure of the chromophores was studied by electrostatic interactions and mechanical embedding using hybrid quantum-classical methods. Environmental effects were found to be of importance, in particular, for the excitonic coupling of chromophores in light-harvesting complex II. Although the simulations for such highly complex systems are still restricted by various approximations, the improved approaches and obtained results have proven to be important contributions for a better understanding of light-induced processes in biosystems which also adds to efforts of their artificial reproduction. 2013 urn:nbn:de:kobv:517-opus-70477 Institut für Chemie