Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-56796 Wissenschaftlicher Artikel Stein, Seth; Liu, Mian; Camelbeeck, Thierry; Merino, Miguel; Landgraf, Angela; Hintersberger, Esther; Kübler, Simon Landgraf, Angelika; Kübler, Simon; Hintersberger, Esther; Stein, Seth Challenges in assessing seismic hazard in intraplate Europe Intraplate seismicity is often characterized by episodic, clustered and migrating earthquakes and extended after-shock sequences. Can these observations - primarily from North America, China and Australia - usefully be applied to seismic hazard assessment for intraplate Europe? Existing assessments are based on instrumental and historical seismicity of the past c. 1000 years, as well as some data for active faults. This time span probably fails to capture typical large-event recurrence intervals of the order of tens of thousands of years. Palaeoseismology helps to lengthen the observation window, but preferentially produces data in regions suspected to be seismically active. Thus the expected maximum magnitudes of future earthquakes are fairly uncertain, possibly underestimated, and earthquakes are likely to occur in unexpected locations. These issues particularly arise in considering the hazards posed by low-probability events to both heavily populated areas and critical facilities. For example, are the variations in seismicity (and thus assumed seismic hazard) along the Rhine Graben a result of short sampling or are they real? In addition to a better assessment of hazards with new data and models, it is important to recognize and communicate uncertainties in hazard estimates. The more users know about how much confidence to place in hazard maps, the more effectively the maps can be used. London The Geological Society 2017 16 Seismicity, fault rupture and earthquake hazards in slowly deforming regions 432 978-1-86239-745-3 13 28 10.1144/SP432.7 Institut für Umweltwissenschaften und Geographie OPUS4-56761 Wissenschaftlicher Artikel Landgraf, Angela; Kübler, Simon; Hintersberger, Esther; Stein, Seth Active tectonics, earthquakes and palaeoseismicity in slowly deforming continents London The Geological Society 2017 12 Seismicity, fault rupture and earthquake hazards in slowly deforming regions 432 978-1-86239-745-3 1 1 12 10.1144/SP432.13 Institut für Geowissenschaften OPUS4-36784 Wissenschaftlicher Artikel Hintersberger, Esther; Thiede, Rasmus Christoph; Strecker, Manfred The role of extension during brittle deformation within the NW Indian Himalaya Synorogenic extension has been recognized as an integral structural constituent of mountain belts and high-elevation plateaus during their evolution. In the Himalaya, both orogen-parallel and orogen-normal extension has been recognized. However, the underlying driving forces for extension and their timing are still a matter of debate. Here we present new fault kinematic data based on systematic measurements of hundreds of outcrop-scale brittle fault planes in the NW Indian Himalaya. This new data set, as well as field observations including crosscutting relationships, mineral fibers on fault planes, and correlations with deformation structures in lake sediments, allows us to distinguish different deformation styles. The overall strain pattern derived from our data reflects the large regional contractional deformation pattern very well but also reveals significant extensional deformation in a region, which is dominated by shortening. In total, we were able to identify six deformation styles, most of which are temporally and spatially linked, representing protracted shortening. Our observations also furnish the basis for a detailed overview of the younger deformation history in the NW Himalaya, which has been characterized by extension overprinting previously generated structures related to shortening. The four dominant deformation styles are (1) shortening parallel to the regional convergence direction; (2) arc-normal extension; (3) arc-parallel extension; and finally, (4) E-W extension. This is the first data set where a succession of both arc-normal and E-W extension has been documented in the Himalaya. Importantly, our observations help differentiate E-W extension triggered by processes within the Tibetan Plateau from arc-parallel and arc-normal extension originating from the curvature of the Himalayan orogen. Washington American Geophysical Union 2011 16 Tectonics 30 10.1029/2010TC002822 Institut für Geowissenschaften OPUS4-32232 Wissenschaftlicher Artikel Hintersberger, Esther; Thiede, Rasmus Christoph; Strecker, Manfred; Hacker, Bradley R. East-west extension in the NW Indian Himalaya Explaining the presence of normal faults in overall compressive settings is a challenging problem in understanding the tectonics of active mountain belts. The Himalayan-Tibetan orogenic system is an excellent setting to approach this problem because it preserves one of the most dramatic records of long-term, contemporaneous shortening and extension. Over the past decades, several studies have described extensional features, not only in the Tibetan Plateau, but also in the Himalaya. For a long time, the favored model explained the function of the Southern Tibetan detachment system, a major fault zone in the Himalaya, as a decoupling horizon between the regime of crustal shortening forming the Himalayan wedge to the south and the extensional regime of the Tibetan Plateau to the north. However, in recent years, increasing evidence has shown that N-S-trending normal faults in the Central Himalaya crosscut not only the Southern Tibetan detachment system, but also the Main Central thrust. Here, we present new structural data and geologic evidence collected within the NW Indian Himalaya and combine them with previously published seismicity data sets in order to document pervasive E-W extension accommodated along N-S-trending faults extending as far south as the footwall of the Main Central thrust. We conducted a kinematic analysis of fault striations on brittle faults, documented and mapped fault scarps in Quaternary sedimentary deposits using satellite imagery, and made field observations in the Greater Sutlej region (Spiti, Lahul, Kinnaur) and the Garhwal Himalaya. Studies of extensional features within the regionally NW- SE-trending NW Indian Himalaya provide the advantage that arc-parallel and E-W extension can be separated, in contrast to the Central Himalaya. Therefore, our observations of E-W extension in the Indian NW Himalaya are well suited to test the applicability of current tectonic models for the whole Himalaya. We favor the interpretation of E-W extension in the NW Indian Himalaya as a propagation of extension driven by collapse of the Tibetan Plateau. 2010 10.1130/B26589.1 Institut für Geowissenschaften OPUS4-6415 Dissertation Hintersberger, Esther The role of extension during the evolution of the NW Indian Himalaya The evolution of most orogens typically records cogenetic shortening and extension. Pervasive normal faulting in an orogen, however, has been related to late syn- and post-collisional stages of mountain building with shortening focused along the peripheral sectors of the orogen. While extensional processes constitute an integral part of orogenic evolution, the spatiotemporal characteristics and the kinematic linkage of structures related to shortening and extension in the core regions of the orogen are often not well known. Related to the India-Eurasia collision, the Himalaya forms the southern margin of the Tibetan Plateau and constitutes the most prominent Cenozoic type example of a collisional orogen. While thrusting is presently observed along the foothills of the orogen, several generations of extensional structures have been detected in the internal, high-elevation regions, both oriented either parallel or perpendicular to the strike of the orogen. In the NW Indian Himalaya, earthquake focal mechanisms, seismites and ubiquitous normal faulting in Quaternary deposits, and regional GPS measurements reveal ongoing E-W extension. In contrast to other extensional structures observed in the Himalaya, this extension direction is neither parallel nor perpendicular to the NE-SW regional shortening direction. In this study, I took advantage of this obliquity between the trend of the orogen and structures related to E-W oriented extension in order to address the question of the driving forces of different extension directions. Thus, extension might be triggered triggered by processes within the Tibetan Plateau or originates from the curvature of the Himalayan orogen. In order to elaborate on this topic, I present new fault-kinematic data based on systematic measurements of approximately 2000 outcrop-scale brittle fault planes with displacements of up to several centimeters that cover a large area of the NW Indian Himalaya. This new data set together with field observations relevant for relative chronology allows me to distinguish six different deformation styles. One of the main results are that the overall strain pattern derived from this data reflects the regionally important contractional deformation pattern very well, but also reveals significant extensional deformation. In total, I was able to identify six deformation styles, most of which are temporally and spatially linked and represent protracted shortening, but also significant extensional directions. For example, this is the first data set where a succession of both, arc-normal and E-W extension have been documented in the Himalaya. My observations also furnish the basis for a detailed overview of the younger extensional deformation history in the NW Indian Himalaya. Field and remote-sensing based geomorphic analyses, and geochronologic 40Ar/39Ar data on synkinematic muscovites along normal faults help elucidate widespread E-W extension in the NW Indian Himalaya which must have started at approximately 14-16 Ma, if not earlier. In addition, I documented and mapped fault scarps in Quaternary sedimentary deposits using satellite imagery and field inspection. Furthermore, I made field observations of regional normal faults, compiled structures from geological maps and put them in a regional context. Finally, I documented seismites in lake sediments close to the currently most active normal fault in the study area in order to extend the (paleo) seismic record of this particular fault. Taken together, this data sets document that E-W extension is the dominant active deformation style in the internal parts of the orogen. In addition, the combined field, geomorphic and remote-sensing data sets prove that E-W extension occurs in a much more larger region toward the south and west than the seismicity data have suggested. In conclusion, the data presented here reveal the importance of extension in a region, which is still dominated by ongoing collision and shortening. The regional fault distribution and cross-cutting relationships suggest that extension parallel and perpendicular to the strike of the orogen are an integral part of the southward propagation of the active thrust front and the associated lateral growth of the Himalayan arc. In the light of a wide range of models proposed for extension in the Himalaya and the Tibetan plateau, I propose that E-W extension in the NW Indian Himalaya is transferred from the Tibetan Plateau due the inability of the Karakorum fault (KF) to adequately accommodate ongoing E-W extension on the Tibetan Plateau. Furthermore, in line with other observations from Tibet, the onset of E-W normal faulting in the NW Himalaya may also reflect the attainment of high topography in this region, which generated crustal stresses conducive to spatially extensive extension. 2013 urn:nbn:de:kobv:517-opus-66179 Institut für Geowissenschaften