Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-8230 Dissertation Pingel, Heiko Mountain-range uplift & climate-system interactions in the Southern Central Andes Zwei häufig diskutierte Aspekte der spätkänozoischen Gebirgsbildung der Anden sind der Zeitpunkt sowie die Art und Weise der Heraushebung des Puna-Plateaus und seiner Randgebiete innerhalb der Ostkordillere und die damit verbundenen klimatischen Änderungen in NW Argentinien. Die Ostkordillere trennt die Bereiche des endorheischen, ariden Plateaus von semiariden und extern entwässerten intermontanen Becken sowie dem humiden Andenvorland im Osten. Diese Unterschiede verdeutlichen die Bedeutung der östlichen Flanken der Anden als orografische Barrieren gegenüber feuchten Luftmassen aus dem Osten und spiegelt sich auch in ausgeprägten Relief- und Topografiegradienten, der Niederschlagsverteilung, und der Effizienz von Oberflächenprozessen wider. Obwohl das übergeordnete Deformationsmuster in diesem Teil der Anden eine ostwärts gerichtete Wanderung der Deformationsprozesse im Gebirge indiziert, gibt es hier keine klar definierte Deformationsfront. Hebungsvorgänge und die damit im Zusammenhang stehenden Sedimentprozesse setzen räumlich und zeitlich sehr unterschiedlich ein. Zudem gestalten periodisch wiederkehrende Deformationsereignisse innerhalb intermontaner Becken und diachrone Hebungsvorgänge, durch Reaktivierung älterer Sockelstrukturen im Vorland, eine detaillierte Auswertung der räumlich-zeitlichen Hebungsmuster zusätzlich schwierig. Die vorliegende Arbeit konzentriert sich hauptsächlich auf die tektonische Entwicklung der Ostkordillere im Nordwesten Argentiniens, die Ablagerungsgeschichte ihrer intermontanen Sedimentbecken und die topografische Entwicklung der Ostflanke des andinen Puna-Plateaus. Im Allgemeinen sind sich die Sedimentbecken der Ostkordillere und der angrenzenden Provinzen, den Sierras Pampeanas und der Santa Bárbara Region, den durch Störungen begrenzten und mit Sedimenten verfüllten Becken der hochandinen Plateauregion sehr ähnlich. Deutliche Unterschiede zur Puna bestehen aber dennoch, denn wiederholte Deformations-, Erosions- und Sedimentationsprozesse haben in den intermontanen Becken zu einer vielfältigen Stratigrafie, Überlagerungsprozessen und einer durch tektonische Prozesse und klimatischen Wandel charakterisierten Landschaft beigetragen. Je nach Erhaltungsgrad können in einigen Fällen Spuren dieser sedimentären und tektonischen Entwicklung bis in die Zeit zurückreichen, als diese Bereiche des Gebirges noch Teil eines zusammenhängenden und unverformten Vorlandbeckens waren. Im Nordwesten Argentiniens enthalten känozoische Sedimente zahlreiche datierbare und geochemisch korrelierbare Vulkanaschen, die nicht nur als wichtige Leithorizonte zur Entschlüsselung tektonischer und sedimentärer Ereignisse dienen. Die vulkanischen Gläser dieser Aschen archivieren außerdem Wasserstoff-Isotopenverhältnisse früherer Oberflächenwasser, mit deren Hilfe - im Vergleich mit den Isotopenverhältnissen rezenter meteorischer Wässer - die räumliche und zeitliche Entstehung orografischer Barrieren und tektonisch erzwungene Klima- und Umweltveränderungen verfolgt werden können. Uran-Blei-Datierungen an Zirkonen aus den vulkanischen Aschelagen und die Rekonstruktion sedimentärer Paläotransportrichtungen im intermontanen Humahuaca-Becken in der Ostkordillere (23.5° S) deuten an, dass das heutige Becken bis vor etwa 4.2 Ma Bestandteil eines größtenteils uneingeschränkten Ablagerungsbereichs war, der sich bis ins Vorland erstreckt haben muss. Deformation und Hebung östlich des heutigen Beckens sorgten dabei für eine fortschreitende Entkopplung des Entwässerungsnetzes vom Vorland und eine Umlenkung der Flussläufe nach Süden. In der Folge erzwang die weitere Hebung der Gebirgsblöcke das Abregnen östlicher Luftmassen in immer östlicher gelegene Bereiche. Zudem können periodische Schwankungen der hydrologischen Verbindung des Beckens mit dem Vorland im Zusammenhang mit der Ablagerung und Erosion mächtiger Beckenfüllungen identifiziert werden. Systematische Beziehungen zwischen Verwerfungen, regionalen Diskontinuitäten und verstellten Terrassenflächen verweisen außerdem auf ein generelles Muster beckeninterner Deformation, vermutlich als Folge umfangreicher Beckenerosion und damit verbundenen Änderungen im tektonischen Spannungsfeld der Region. Einige dieser Beobachtungen können anhand veränderter Wasserstoff-Isotopenkonzentrationen vulkanischer Gläser aus der känozoischen Stratigrafie untermauert werden. Die δDg-Werte zeigen zwei wesentliche Trends, die einerseits in Verbindung mit Oberflächenhebung innerhalb des Einzugsgebiets zwischen 6.0 und 3.5 Ma stehen und andererseits mit dem Einsetzen semiarider Bedingungen durch Erreichen eines Schwellenwertes der Topografie der östlich gelegenen Gebirgszüge nach 3.5 Ma erklärt werden können. Tektonisch bedingte Unterbrechung der Sedimentzufuhr aus westlich gelegenen Liefergebieten um 4.2 Ma und die folgende Hinterland-Aridifizierung deuten weiterhin auf die Möglichkeit hin, dass diese Prozesse die Folge eines lateralen Wachstums des Puna-Plateaus sind. Diese Aridifizierung im Bereich der Puna resultierte in einem ineffizienten, endorheischen Entwässerungssystem, das dazu beigetragen hat, das Plateau vor Einschneidung und externer Entwässerung zu bewahren und Reliefgegensätze aufgrund fortgesetzter Beckensedimentation reduzierte. Die diachrone Natur der Hebungen und Beckenbildungen sowie deren Auswirkungen auf das Flusssystem im angrenzenden Vorland wird sowohl durch detaillierte Analysen der Sedimentherkunft und Transportrichtungen als auch Uran-Blei-Datierungen im Lerma- und Metán-Becken (25° S) weiterhin unterstrichen. Das wird besonders deutlich am Beispiel der isolierten Hebung der Sierra de Metán vor etwa 10 Ma, die mehr als 50 km von der aktiven orogenen Front im Westen entfernt liegt. Ab 5 Ma sind typische Lithologien der Puna nicht mehr in den Vorlandsedimenten nachweisbar, welches die weitere Hebung innerhalb der Ostkordillere und die hydrologische Isolation des Angastaco-Beckens in dieser Region dokumentiert. Im Spätpliozän und Quartär ist die Deformation letztlich über das gesamte Vorland verteilt und bis heute aktiv. Um die Beziehungen zwischen tektonisch kontrollierten Veränderungen der Topografie und deren Einfluss auf atmosphärische Prozesse besser zu verstehen, werden in dieser Arbeit weitere altersspezifische Wasserstoff-Isotopendaten vulkanischer Gläser aus dem zerbrochenen Vorland, dem Angastaco-Becken in der Übergangsregion zwischen Ostkordillere und Punarand und anderer intermontaner Becken weiter südlich vorgestellt. Die Resultate dokumentieren ähnliche Höhenlagen der untersuchten Regionen bis ca. 7 Ma, gefolgt von Hebungsprozessen im Bereich des Angastaco-Beckens. Ein Vergleich mit Isotopendaten vom benachbarten Puna-Plateau hilft abrupte δDg-Schwankungen in den intermontanen Daten zu erklären und untermauert die Existenz wiederkehrender Phasen verstärkt konvektiver Wetterlagen im Pliozän, ähnlich heutigen Bedingungen. In dieser Arbeit werden geländeorientierte und geochemische Methoden kombiniert, um Erkenntnisse über die Abläufe von topografiebildenden Deformations- und Hebungsprozessen zu gewinnen und Wechselwirkungen mit der daraus resultierenden Niederschlagsverteilung, Erosion und Sedimentation innerhalb tektonisch aktiver Gebirge zu erforschen. Diese Erkenntnisse sind für ein besseres Verständnis von Subduktionsgebirgen essentiell, besonders hinsichtlich des Deformationsstils und der zeitlich-räumlichen Beziehungen bei der Hebung und Sedimentbeckenbildung. Diese Arbeit weist darüberhinaus auf die Bedeutung stabiler Isotopensysteme zur Beantwortung paläoaltimetrischer Fragestellungen und zur Erforschung von Paläoumweltbedingungen hin und liefert wichtige Erkenntnisse für einen kritischen Umgang mit solchen Daten in anderen Regionen. 2015 xii, 178 urn:nbn:de:kobv:517-opus4-82301 Institut für Geowissenschaften OPUS4-10418 Dissertation Georgieva, Viktoria Neotectonics & Cooling History of the Southern Patagonian Andes The collision of bathymetric anomalies, such as oceanic spreading centers, at convergent plate margins can profoundly affect subduction dynamics, magmatism, and the structural and geomorphic evolution of the overriding plate. The Southern Patagonian Andes of South America are a prime example for sustained oceanic ridge collision and the successive formation and widening of an extensive asthenospheric slab window since the Middle Miocene. Several of the predicted upper-plate geologic manifestations of such deep-seated geodynamic processes have been studied in this region, but many topics remain highly debated. One of the main controversial topics is the interpretation of the regional low-temperature thermochronology exhumational record and its relationship with tectonic and/or climate-driven processes, ultimately manifested and recorded in the landscape evolution of the Patagonian Andes. The prominent along-strike variance in the topographic characteristics of the Andes, combined with coupled trends in low-temperature thermochronometer cooling ages have been interpreted in very contrasting ways, considering either purely climatic (i.e. glacial erosion) or geodynamic (slab-window related) controlling factors. This thesis focuses on two main aspects of these controversial topics. First, based on field observations and bedrock low-temperature thermochronology data, the thesis addresses an existing research gap with respect to the neotectonic activity of the upper plate in response to ridge collision - a mechanism that has been shown to affect the upper plate topography and exhumational patterns in similar tectonic settings. Secondly, the qualitative interpretation of my new and existing thermochronological data from this region is extended by inverse thermal modelling to define thermal histories recorded in the data and evaluate the relative importance of surface vs. geodynamic factors and their possible relationship with the regional cooling record. My research is centered on the Northern Patagonian Icefield (NPI) region of the Southern Patagonian Andes. This site is located inboard of the present-day location of the Chile Triple Junction - the juncture between the colliding Chile Rise spreading center and the Nazca and Antarctic Plates along the South American convergent margin. As such this study area represents the region of most recent oceanic-ridge collision and associated slab window formation. Importantly, this location also coincides with the abrupt rise in summit elevations and relief characteristics in the Southern Patagonian Andes. Field observations, based on geological, structural and geomorphic mapping, are combined with bedrock apatite (U-Th)/He and apatite fission track (AHe and AFT) cooling ages sampled along elevation transects across the orogen. This new data reveals the existence of hitherto unrecognized neotectonic deformation along the flanks of the range capped by the NPI. This deformation is associated with the closely spaced oblique collision of successive oceanic-ridge segments in this region over the past 6 Ma. I interpret that this has caused a crustal-scale partitioning of deformation and the decoupling, margin-parallel migration, and localized uplift of a large crustal sliver (the NPI block) along the subduction margin. The location of this uplift coincides with a major increase of summit elevations and relief at the northern edge of the NPI massif. This mechanism is compatible with possible extensional processes along the topographically subdued trailing edge of the NPI block as documented by very recent and possibly still active normal faulting. Taken together, these findings suggest a major structural control on short-wavelength variations in topography in the Southern Patagonian Andes - the region affected by ridge collision and slab window formation. The second research topic addressed here focuses on using my new and existing bedrock low-temperature cooling ages in forward and inverse thermal modeling. The data was implemented in the HeFTy and QTQt modeling platforms to constrain the late Cenozoic thermal history of the Southern Patagonian Andes in the region of the most recent upper-plate sectors of ridge collision. The data set combines AHe and AFT data from three elevation transects in the region of the Northern Patagonian Icefield. Previous similar studies claimed far-reaching thermal effects of the approaching ridge collision and slab window to affect patterns of Late Miocene reheating in the modelled thermal histories. In contrast, my results show that the currently available data can be explained with a simpler thermal history than previously proposed. Accordingly, a reheating event is not needed to reproduce the observations. Instead, the analyzed ensemble of modelled thermal histories defines a Late Miocene protracted cooling and Pliocene-to-recent stepwise exhumation. These findings agree with the geological record of this region. Specifically, this record indicates an Early Miocene phase of active mountain building associated with surface uplift and an active fold-and-thrust belt, followed by a period of stagnating deformation, peneplanation, and lack of synorogenic deposition in the Patagonian foreland. The subsequent period of stepwise exhumation likely resulted from a combination of pulsed glacial erosion and coeval neotectonic activity. The differences between the present and previously published interpretation of the cooling record can be reconciled with important inconsistencies of previously used model setup. These include mainly the insufficient convergence of the models and improper assumptions regarding the geothermal conditions in the region. This analysis puts a methodological emphasis on the prime importance of the model setup and the need for its thorough examination to evaluate the robustness of the final outcome. 2016 xviii, 200 Seiten urn:nbn:de:kobv:517-opus4-104185 Institut für Geowissenschaften OPUS4-53527 Dissertation Arnous, Ahmad Paleosismología y neotectónica del antepaís fragmentado en el extremo sureste del Sistema Santa Bárbara, Noroeste Argentino This thesis constitutes a multidisciplinary study of the central sector of the Santa Bárbara System geological province, the tectonically active broken foreland of the central Andes of north-western Argentina. The study is based on a tectono-geomorphic characterization combined with a variety of geophysical and structural studies. The principal focus was on the faulted piedmont regions of the Sierra de La Candelaria and, to a lesser degree, the extreme south of the intermontane Metán basin. The study region is located in the border area between the provinces of Salta and Tucumán. The main objective was to characterize and analyze evidence of Quaternary tectonic activity in the region, in order to increase the available information on neotectonic structures and their seismogenic potential. To this end, several methods were applied and integrated, such as the interpretation of seismic reflection lines, the creation of structural sections and kinematic modeling, as well as near-surface geophysical methods, in order to explore the geometry of faults observed at the surface and to assess the behavior of potential blind faults. In a first step, a geomorphic and structural survey of the study area was carried out using LANDSAT and SENTINEL 2 multispectral satellite images, which allowed to recognize different levels of Quaternary alluvial fans and fluvial terraces that are important strain markers in the field. In a second step, different morphometric indexes were determined from digital elevation models (DEM) and combined with field observations; it was possible to identify evidence of tectonic deformation related to four neotectonic faults. In a third step, three structures (Arias, El Quemado and Copo Quile faults) were selected for more detailed studies involving Electrical Resistive Tomography (ERT) and Seismic Refraction Tomography (SRT). This part of the study enabled me to define the geometry of faults at depth, helped to infer geometric and kinematic characteristics, and confirmed the extent of recent deformation. The Arias and El Quemado faults were interpreted as reverse faults related to layer-parallel, flexuralslip faulting, while the Copo Quile fault was interpreted as a blind reverse fault. Subsequently, a joint interpretation of seismic reflection lines and well-logs from the Choromoro and Metán basins was carried out, to decipher the principal structures and their influence on the deformation of the different sedimentary units in the intermontane basins. The obtained information was integrated into a kinematic model. This model suggests that the recent deformation is driven by a blind, deep-seated reverse fault, located under the Sierra de La Candelaria and Cantero anticline. The corresponding shortening involves the sedimentary strata of the Salta and Orán groups in the adjacent basins, which was accommodated by faults that moved along stratal boundaries, thus bending and folding the Quaternary deposits at the surface. The kinematic model enabled identifying the approximate location of the important detachment horizons that control the overall crustal deformation style in this region. The shallowest detachment horizon is located at 4 km depth and controls deformation in a thin-skinned manner. In addition, the horizon of the thick-skinned style of deformation was identified at 21 km depth. Finally, from the integration of all the results obtained, the seismogenic potential of the faults in the study area was evaluated. The first-order faults that control deformation in the area are responsible for the large earthquakes. While, Quaternary flexural-slip faults affecting only the sedimentary cover are secondary structures that accommodate deformation and were activated very low magnitude earthquakes and/or aseismic movements. In conclusion, the results of this study allow to demonstrate that the regional fault system of intrabasinal faults in the Santa Bárbara System constitutes a potential seismogenic source in the region, where numerous towns and extensive civilian infrastructure are located. In addition, the derived kinematic model requires the existence of numerous blind structures. Only for a small number of these their presence can be unambiguously detected at the surface by geomorphic analysis, which emphasizes the need of conducting this type of studies in tectonically active regions such as the Santa Bárbara System. 2021 182 urn:nbn:de:kobv:517-opus4-535274 10.25932/publishup-53527 Institut für Geowissenschaften OPUS4-60169 Dissertation Olivotos, Spyros-Christos Reconstructing the Landscape Evolution of South Central Africa by Surface Exposure Dating of Waterfalls The East African Rift System (EARS) is a significant example of active tectonics, which provides opportunities to examine the stages of continental faulting and landscape evolution. The southwest extension of the EARS is one of the most significant examples of active tectonics nowadays, however, seismotectonic research in the area has been scarce, despite the fundamental importance of neotectonics. Our first study area is located between the Northern Province of Zambia and the southeastern Katanga Province of the Democratic Republic of Congo. Lakes Mweru and Mweru Wantipa are part of the southwest extension of the EARS. Fault analysis reveals that, since the Miocene, movements along the active Mweru-Mweru Wantipa Fault System (MMFS) have been largely responsible for the reorganization of the landscape and the drainage patterns across the southwestern branch of the EARS. To investigate the spatial and temporal patterns of fluvial-lacustrine landscape development, we determined in-situ cosmogenic 10Be and 26Al in a total of twenty-six quartzitic bedrock samples that were collected from knickpoints across the Mporokoso Plateau (south of Lake Mweru) and the eastern part of the Kundelungu Plateau (north of Lake Mweru). Samples from the Mporokoso Plateau and close to the MMFS provide evidence of temporary burial. By contrast, surfaces located far from the MMFS appear to have remained uncovered since their initial exposure as they show consistent 10Be and 26Al exposure ages ranging up to ~830 ka. Reconciliation of the observed burial patterns with morphotectonic and stratigraphic analysis reveals the existence of an extensive paleo-lake during the Pleistocene. Through hypsometric analyses of the dated knickpoints, the potential maximum water level of the paleo-lake is constrained to ~1200 m asl (present lake lavel: 917 m asl). High denudation rates (up to ~40 mm ka-1) along the eastern Kundelungu Plateau suggest that footwall uplift, resulting from normal faulting, caused river incision, possibly controlling paleo-lake drainage. The lake level was reduced gradually reaching its current level at ~350 ka. Parallel to the MMFS in the north, the Upemba Fault System (UFS) extends across the southeastern Katanga Province of the Democratic Republic of Congo. This part of our research is focused on the geomorphological behavior of the Kiubo Waterfalls. The waterfalls are the currently active knickpoint of the Lufira River, which flows into the Upemba Depression. Eleven bedrock samples along the Lufira River and its tributary stream, Luvilombo River, were collected. In-situ cosmogenic 10Be and 26Al were used in order to constrain the K constant of the Stream Power Law equation. Constraining the K constant allowed us to calculate the knickpoint retreat rate of the Kiubo Waterfalls at ~0.096 m a-1. Combining the calculated retreat rate of the knickpoint with DNA sequencing from fish populations, we managed to present extrapolation models and estimate the location of the onset of the Kiubo Waterfalls, revealing its connection to the seismicity of the UFS. 2023 159 Rekonstruktion der Landschaftsentwicklung im südlichen Zentralafrika durch Datierung der Oberflächenexposition von Wasserfällen urn:nbn:de:kobv:517-opus4-601699 10.25932/publishup-60169 Institut für Geowissenschaften OPUS4-57714 Dissertation Patyniak, Magda Seismotectonic segmentation, paleoearthquakes and style of deformation along the Northern Pamir thrust system, South Kyrgyzstan The Pamir Frontal Thrust (PFT) located in the Trans Alai range in Central Asia is the principal active fault of the intracontinental India-Eurasia convergence zone and constitutes the northernmost boundary of the Pamir orogen at the NW edge of this collision zone. Frequent seismic activity and ongoing crustal shortening reflect the northward propagation of the Pamir into the intermontane Alai Valley. Quaternary deposits are being deformed and uplifted by the advancing thrust front of the Trans Alai range. The Alai Valley separates the Pamir range front from the Tien Shan mountains in the north; the Alai Valley is the vestige of a formerly contiguous basin that linked the Tadjik Depression in the west with the Tarim Basin in the east. GNSS measurements across the Central Pamir document a shortening rate of ~25 mm/yr, with a dramatic decrease of ~10-15 mm over a short distance across the northernmost Trans Alai range. This suggests that almost half of the shortening in the greater Pamir - Tien Shan collision zone is absorbed along the PFT. The short-term (geodetic) and long-term (geologic) shortening rates across the northern Pamir appear to be at odds with an apparent slip-rate discrepancy along the frontal fault system of the Pamir. Moreover, the present-day seismicity and historical records have not revealed great Mw > 7 earthquakes that might be expected with such a significant slip accommodation. In contrast, recent and historic earthquakes exhibit complex rupture patterns within and across seismotectonic segments bounding the Pamir mountain front, challenging our understanding of fault interaction and the seismogenic potential of this area, and leaving the relationships between seismicity and the geometry of the thrust front not well understood. In this dissertation I employ different approaches to assess the seismogenic behavior along the PFT. Firstly, I provide paleoseismic data from five trenches across the central PFT segment (cPFT) and compute a segment-wide earthquake chronology over the past 16 kyr. This novel dataset provides important insights into the recurrence, magnitude, and rupture extent of past earthquakes along the cPFT. I interpret five, possibly six paleoearthquakes that have ruptured the Pamir mountain front since ∼7 ka and 16 ka, respectively. My results indicate that at least three major earthquakes ruptured the full-segment length and possibly crossed segment boundaries with a recurrence interval of ∼1.9 kyr and potential magnitudes of up to Mw 7.4. Importantly, I did not find evidence for great (i.e., Mw ≥8) earthquakes. Secondly, I combine my paleoseimic results with morphometric analyses to establish a segment-wide distribution of the cumulative vertical separation along offset fluvial terraces and I model a long-term slip rate for the cPFT. My investigations reveal discrepancies between the extents of slip and rupture during apparent partial segment ruptures in the western half of the cPFT. Combined with significantly higher fault scarp offsets in this sector of the cPFT, the observations indicate a more mature fault section with a potential for future fault linkage. I estimate an average rate of horizontal motion for the cPFT of 4.1 ± 1.5 mm/yr during the past ∼5 kyr, which does not fully match the GNSS-derived present-day shortening rate of ∼10 mm/yr. This suggests a complex distribution of strain accumulation and potential slip partitioning between the cPFT and additional faults and folds within the Pamir that may be associated with a partially locked regional décollement. The third part of the thesis provides new insights regarding the surface rupture of the 2008 Mw 6.6 Nura earthquake that ruptured along the eastern PFT sector. I explore this rupture in the context of its structural complexity by combining extensive field observations with high-resolution digital surface models. I provide a map of the rupture extent, net slip measurements, and updated regional geological observations. Based on this data I propose a tectonic model in this area associated with secondary flexural-slip faulting along steeply dipping bedding of folded Paleogene sedimentary strata that is related to deformation along a deeper blind thrust. Here, the strain release seems to be transferred from the PFT towards older inherited basement structures within the area of advanced Pamir-Tien Shan collision zone. The extensive research of my dissertation results in a paleoseismic database of the past 16 ~kyr, which contributes to the understanding of the seismogenic behavior of the PFT, but also to that of segmented thrust-fault systems in active collisional settings. My observations underscore the importance of combining different methodological approaches in the geosciences, especially in structurally complex tectonic settings like the northern Pamir. Discrepancy between GNSS-derived present-day deformation rates and those from different geological archives in the central part, as well as the widespread distribution of the deformation due to earthquake triggered strain transfer in the eastern part reveals the complexity of this collision zone and calls for future studies involving multi-temporal and interdisciplinary approaches. 2022 xxii, 165 urn:nbn:de:kobv:517-opus4-577141 10.25932/publishup-57714 Institut für Geowissenschaften OPUS4-10339 Dissertation Dey, Saptarshi Tectonic and climatic control on the evolution of the Himalayan mountain front Variations in the distribution of mass within an orogen may lead to transient sediment storage, which in turn might affect the state of stress and the level of fault activity. Distinguishing between different forcing mechanisms causing variations of sediment flux and tectonic activity, is therefore one of the most challenging tasks in understanding the spatiotemporal evolution of active mountain belts. The Himalayan mountain belt is one of the most significant Cenozoic collisional mountain belt, formed due to collision between northward-bound Indian Plate and the Eurasian Plate during the last 55-50 Ma. Ongoing convergence of these two tectonic plates is accommodated by faulting and folding within the Himalayan arc-shaped orogen and the continued lateral and vertical growth of the Tibetan Plateau and mountain belts adjacent to the plateau as well as regions farther north. Growth of the Himalayan orogen is manifested by the development of successive south-vergent thrust systems. These thrust systems divide the orogen into different morphotectonic domains. From north to south these thrusts are the Main Central Thrust (MCT), the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). The growing topography interacts with moisture-bearing monsoonal winds, which results in pronounced gradients in rainfall, weathering, erosion and sediment transport toward the foreland and beyond. However, a fraction of this sediment is trapped and transiently stored within the intermontane valleys or 'dun's within the lower-elevation foothills of the range. Improved understanding of the spatiotemporal evolution of these sediment archives could provide a unique opportunity to decipher the triggers of variations in sediment production, delivery and storage in an actively deforming mountain belt and support efforts to test linkages between sediment volumes in intermontane basins and changes in the shallow crustal stress field. As sediment redistribution in mountain belts on timescales of 102-104 years can effect cultural characteristics and infrastructure in the intermontane valleys and may even impact the seismotectonics of a mountain belt, there is a heightened interest in understanding sediment-routing processes and causal relationships between tectonism, climate and topography. It is here at the intersection between tectonic processes and superposed climatic and sedimentary processes in the Himalayan orogenic wedge, where my investigation is focused on. The study area is the intermontane Kangra Basin in the northwestern Sub-Himalaya, because the characteristics of the different Himalayan morphotectonic provinces are well developed, the area is part of a region strongly influenced by monsoonal forcing, and the existence of numerous fluvial terraces provides excellent strain markers to assess deformation processes within the Himalayan orogenic wedge. In addition, being located in front of the Dhauladhar Range the region is characterized by pronounced gradients in past and present-day erosion and sediment processes associated with repeatedly changing climatic conditions. In light of these conditions I analysed climate-driven late Pleistocene-Holocene sediment cycles in this tectonically active region, which may be responsible for triggering the tectonic re-organization within the Himalayan orogenic wedge, leading to out-of-sequence thrusting, at least since early Holocene. The Kangra Basin is bounded by the MBT and the Sub-Himalayan Jwalamukhi Thrust (JMT) in the north and south, respectively and transiently stores sediments derived from the Dhauladhar Range. The Basin contains ~200-m-thick conglomerates reflecting two distinct aggradation phases; following aggradation, several fluvial terraces were sculpted into these fan deposits. 10Be CRN surface exposure dating of these terrace levels provides an age of 53.4±3.2 ka for the highest-preserved terrace (AF1); subsequently, this surface was incised until ~15 ka, when the second fan (AF2) began to form. AF2 fan aggradation was superseded by episodic Holocene incision, creating at least four terrace levels. We find a correlation between variations in sediment transport and ∂18O records from regions affected by the Indian Summer Monsoon (ISM). During strengthened ISMs sand post-LGM glacial retreat, aggradation occurred in the Kangra Basin, likely due to high sediment flux, whereas periods of a weakened ISM coupled with lower sediment supply coincided with renewed re-incision. However, the evolution of fluvial terraces along Sub-Himalayan streams in the Kangra sector is also forced by tectonic processes. Back-tilted, folded terraces clearly document tectonic activity of the JMT. Offset of one of the terrace levels indicates a shortening rate of 5.6±0.8 to 7.5±1.0 mm.a-1 over the last ~10 ka. Importantly, my study reveals that late Pleistocene/Holocene out-of-sequence thrusting accommodates 40-60% of the total 14±2 mm.a-1 shortening partitioned throughout the Sub-Himalaya. Importantly, the JMT records shortening at a lower rate over longer timescales hints towards out-of-sequence activity within the Sub-Himalaya. Re-activation of the JMT could be related to changes in the tectonic stress field caused by large-scale sediment removal from the basin. I speculate that the deformation processes of the Sub-Himalaya behave according to the predictions of critical wedge model and assume the following: While >200m of sediment aggradation would trigger foreland-ward propagation of the deformation front, re-incision and removal of most of the stored sediments (nearly 80-85% of the optimum basin-fill) would again create a sub-critical condition of the wedge taper and trigger the retreat of the deformation front. While tectonism is responsible for the longer-term processes of erosion associated with steepening hillslopes, sediment cycles in this environment are mainly the result of climatic forcing. My new 10Be cosmogenic nuclide exposure dates and a synopsis of previous studies show the late Pleistocene to Holocene alluvial fills and fluvial terraces studied here record periodic fluctuations of sediment supply and transport capacity on timescales of 1000-100000 years. To further evaluate the potential influence of climate change on these fluctuations, I compared the timing of aggradation and incision phases recorded within remnant alluvial fans and terraces with continental climate archives such as speleothems in neighboring regions affected by monsoonal precipitation. Together with previously published OSL ages yielding the timing of aggradation, I find a correlation between variations in sediment transport with oxygen-isotope records from regions affected by the Indian Summer Monsoon (ISM). Accordingly, during periods of increased monsoon intensity (transitions from dry and cold to wet and warm periods - MIS4 to MIS3 and MIS2 to MIS1) (MIS=marine isotope stage) and post-Last Glacial Maximum glacial retreat, aggradation occurred in the Kangra Basin, likely due to high sediment flux. Conversely, periods of weakened monsoon intensity or lower sediment supply coincide with re-incision of the existing basin-fill. Finally, my study entails part of a low-temperature thermochronology study to assess the youngest exhumation history of the Dhauladhar Range. Zircon helium (ZHe) ages and existing low-temperature data sets (ZHe, apatite fission track (AFT)) across this range, together with 3D thermokinematic modeling (PECUBE) reveals constraints on exhumation and activity of the range-bounding Main Boundary Thrust (MBT) since at least mid-Miocene time. The modeling results indicate mean slip rates on the MBT-fault ramp of ~2 - 3 mm.a-1 since its activation. This has lead to the growth of the >5-km-high frontal Dhauladhar Range and continuous deep-seated exhumation and erosion. The obtained results also provide interesting constraints of deformation patterns and their variation along strike. The results point towards the absence of the time-transient 'mid-crustal ramp' in the basal decollement and duplexing of the Lesser Himalayan sequence, unlike the nearby regions or even the central Nepal domain. A fraction of convergence (~10-15%) is accommodated along the deep-seated MBT-ramp, most likely merging into the MHT. This finding is crucial for a rigorous assessment of the overall level of tectonic activity in the Himalayan morphotectonic provinces as it contradicts recently-published geodetic shortening estimates. In these studies, it has been proposed that the total Himalayan shortening in the NW Himalaya is accommodated within the Sub-Himalaya whereas no tectonic activity is assigned to the MBT. 2016 xii, 118 urn:nbn:de:kobv:517-opus4-103390 Institut für Geowissenschaften OPUS4-6415 Dissertation Hintersberger, Esther The role of extension during the evolution of the NW Indian Himalaya The evolution of most orogens typically records cogenetic shortening and extension. Pervasive normal faulting in an orogen, however, has been related to late syn- and post-collisional stages of mountain building with shortening focused along the peripheral sectors of the orogen. While extensional processes constitute an integral part of orogenic evolution, the spatiotemporal characteristics and the kinematic linkage of structures related to shortening and extension in the core regions of the orogen are often not well known. Related to the India-Eurasia collision, the Himalaya forms the southern margin of the Tibetan Plateau and constitutes the most prominent Cenozoic type example of a collisional orogen. While thrusting is presently observed along the foothills of the orogen, several generations of extensional structures have been detected in the internal, high-elevation regions, both oriented either parallel or perpendicular to the strike of the orogen. In the NW Indian Himalaya, earthquake focal mechanisms, seismites and ubiquitous normal faulting in Quaternary deposits, and regional GPS measurements reveal ongoing E-W extension. In contrast to other extensional structures observed in the Himalaya, this extension direction is neither parallel nor perpendicular to the NE-SW regional shortening direction. In this study, I took advantage of this obliquity between the trend of the orogen and structures related to E-W oriented extension in order to address the question of the driving forces of different extension directions. Thus, extension might be triggered triggered by processes within the Tibetan Plateau or originates from the curvature of the Himalayan orogen. In order to elaborate on this topic, I present new fault-kinematic data based on systematic measurements of approximately 2000 outcrop-scale brittle fault planes with displacements of up to several centimeters that cover a large area of the NW Indian Himalaya. This new data set together with field observations relevant for relative chronology allows me to distinguish six different deformation styles. One of the main results are that the overall strain pattern derived from this data reflects the regionally important contractional deformation pattern very well, but also reveals significant extensional deformation. In total, I was able to identify six deformation styles, most of which are temporally and spatially linked and represent protracted shortening, but also significant extensional directions. For example, this is the first data set where a succession of both, arc-normal and E-W extension have been documented in the Himalaya. My observations also furnish the basis for a detailed overview of the younger extensional deformation history in the NW Indian Himalaya. Field and remote-sensing based geomorphic analyses, and geochronologic 40Ar/39Ar data on synkinematic muscovites along normal faults help elucidate widespread E-W extension in the NW Indian Himalaya which must have started at approximately 14-16 Ma, if not earlier. In addition, I documented and mapped fault scarps in Quaternary sedimentary deposits using satellite imagery and field inspection. Furthermore, I made field observations of regional normal faults, compiled structures from geological maps and put them in a regional context. Finally, I documented seismites in lake sediments close to the currently most active normal fault in the study area in order to extend the (paleo) seismic record of this particular fault. Taken together, this data sets document that E-W extension is the dominant active deformation style in the internal parts of the orogen. In addition, the combined field, geomorphic and remote-sensing data sets prove that E-W extension occurs in a much more larger region toward the south and west than the seismicity data have suggested. In conclusion, the data presented here reveal the importance of extension in a region, which is still dominated by ongoing collision and shortening. The regional fault distribution and cross-cutting relationships suggest that extension parallel and perpendicular to the strike of the orogen are an integral part of the southward propagation of the active thrust front and the associated lateral growth of the Himalayan arc. In the light of a wide range of models proposed for extension in the Himalaya and the Tibetan plateau, I propose that E-W extension in the NW Indian Himalaya is transferred from the Tibetan Plateau due the inability of the Karakorum fault (KF) to adequately accommodate ongoing E-W extension on the Tibetan Plateau. Furthermore, in line with other observations from Tibet, the onset of E-W normal faulting in the NW Himalaya may also reflect the attainment of high topography in this region, which generated crustal stresses conducive to spatially extensive extension. 2013 urn:nbn:de:kobv:517-opus-66179 Institut für Geowissenschaften