@phdthesis{Rasche2024, author = {Rasche, Daniel}, title = {Cosmic-ray neutron sensing for the estimation of soil moisture}, doi = {10.25932/publishup-63646}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-636465}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 194}, year = {2024}, abstract = {Water stored in the unsaturated soil as soil moisture is a key component of the hydrological cycle influencing numerous hydrological processes including hydrometeorological extremes. Soil moisture influences flood generation processes and during droughts when precipitation is absent, it provides plant with transpirable water, thereby sustaining plant growth and survival in agriculture and natural ecosystems. Soil moisture stored in deeper soil layers e.g. below 100 cm is of particular importance for providing plant transpirable water during dry periods. Not being directly connected to the atmosphere and located outside soil layers with the highest root densities, water in these layers is less susceptible to be rapidly evaporated and transpired. Instead, it provides longer-term soil water storage increasing the drought tolerance of plants and ecosystems. Given the importance of soil moisture in the context of hydro-meteorological extremes in a warming climate, its monitoring is part of official national adaption strategies to a changing climate. Yet, soil moisture is highly variable in time and space which challenges its monitoring on spatio-temporal scales relevant for flood and drought risk modelling and forecasting. Introduced over a decade ago, Cosmic-Ray Neutron Sensing (CRNS) is a noninvasive geophysical method that allows for the estimation of soil moisture at relevant spatio-temporal scales of several hectares at a high, subdaily temporal resolution. CRNS relies on the detection of secondary neutrons above the soil surface which are produced from high-energy cosmic-ray particles in the atmosphere and the ground. Neutrons in a specific epithermal energy range are sensitive to the amount of hydrogen present in the surroundings of the CRNS neutron detector. Due to same mass as the hydrogen nucleus, neutrons lose kinetic energy upon collision and are subsequently absorbed when reaching low, thermal energies. A higher amount of hydrogen therefore leads to fewer neutrons being detected per unit time. Assuming that the largest amount of hydrogen is stored in most terrestrial ecosystems as soil moisture, changes of soil moisture can be estimated through an inverse relationship with observed neutron intensities. Although important scientific advancements have been made to improve the methodological framework of CRNS, several open challenges remain, of which some are addressed in the scope of this thesis. These include the influence of atmospheric variables such as air pressure and absolute air humidity, as well as, the impact of variations in incoming primary cosmic-ray intensity on observed epithermal and thermal neutron signals and their correction. Recently introduced advanced neutron-to-soil moisture transfer functions are expected to improve CRNS-derived soil moisture estimates, but potential improvements need to be investigated at study sites with differing environmental conditions. Sites with strongly heterogeneous, patchy soil moisture distributions challenge existing transfer functions and further research is required to assess the impact of, and correction of derived soil moisture estimates under heterogeneous site conditions. Despite its capability of measuring representative averages of soil moisture at the field scale, CRNS lacks an integration depth below the first few decimetres of the soil. Given the importance of soil moisture also in deeper soil layers, increasing the observational window of CRNS through modelling approaches or in situ measurements is of high importance for hydrological monitoring applications. By addressing these challenges, this thesis aids to closing knowledge gaps and finding answers to some of the open questions in CRNS research. Influences of different environmental variables are quantified, correction approaches are being tested and developed. Neutron-to-soil moisture transfer functions are evaluated and approaches to reduce effects of heterogeneous soil moisture distributions are presented. Lastly, soil moisture estimates from larger soil depths are derived from CRNS through modified, simple modelling approaches and in situ estimates by using CRNS as a downhole technique. Thereby, this thesis does not only illustrate the potential of new, yet undiscovered applications of CRNS in future but also opens a new field of CRNS research. Consequently, this thesis advances the methodological framework of CRNS for above-ground and downhole applications. Although the necessity of further research in order to fully exploit the potential of CRNS needs to be emphasised, this thesis contributes to current hydrological research and not least to advancing hydrological monitoring approaches being of utmost importance in context of intensifying hydro-meteorological extremes in a changing climate.}, language = {en} } @phdthesis{Felisatti2024, author = {Felisatti, Arianna}, title = {Spatial-numerical associations: From biological foundations to embodied learning to contextual flexibility}, doi = {10.25932/publishup-64179}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-641791}, school = {Universit{\"a}t Potsdam}, pages = {x, 195}, year = {2024}, abstract = {Among the different meanings carried by numerical information, cardinality is fundamental for survival and for the development of basic as well as of higher numerical skills. Importantly, the human brain inherits from evolution a predisposition to map cardinality onto space, as revealed by the presence of spatial-numerical associations (SNAs) in humans and animals. Here, the mapping of cardinal information onto physical space is addressed as a hallmark signature characterizing numerical cognition. According to traditional approaches, cognition is defined as complex forms of internal information processing, taking place in the brain (cognitive processor). On the contrary, embodied cognition approaches define cognition as functionally linked to perception and action, in the continuous interaction between a biological body and its physical and sociocultural environment. Embracing the principles of the embodied cognition perspective, I conducted four novel studies designed to unveil how SNAs originate, develop, and adapt, depending on characteristics of the organism, the context, and their interaction. I structured my doctoral thesis in three levels. At the grounded level (Study 1), I unfold the biological foundations underlying the tendency to map cardinal information across space; at the embodied level (Study 2), I reveal the impact of atypical motor development on the construction of SNAs; at the situated level (Study 3), I document the joint influence of visuospatial attention and task properties on SNAs. Furthermore, I experimentally investigate the presence of associations between physical and numerical distance, another numerical property fundamental for the development of efficient mathematical minds (Study 4). In Study 1, I present the Brain's Asymmetric Frequency Tuning hypothesis that relies on hemispheric asymmetries for processing spatial frequencies, a low-level visual feature that the (in)vertebrate brain extracts from any visual scene to create a coherent percept of the world. Computational analyses of the power spectra of the original stimuli used to document the presence of SNAs in human newborns and animals, support the brain's asymmetric frequency tuning as a theoretical account and as an evolutionarily inherited mechanism scaffolding the universal and innate tendency to represent cardinality across horizontal space. In Study 2, I explore SNAs in children with rare genetic neuromuscular diseases: spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). SMA children never accomplish independent motoric exploration of their environment; in contrast, DMD children do explore but later lose this ability. The different SNAs reported by the two groups support the critical role of early sensorimotor experiences in the spatial representation of cardinality. In Study 3, I directly compare the effects of overt attentional orientation during explicit and implicit processing of numerical magnitude. First, the different effects of attentional orienting based on the type of assessment support different mechanisms underlying SNAs during explicit and implicit assessment of numerical magnitude. Secondly, the impact of vertical shifts of attention on the processing of numerical distance sheds light on the correspondence between numerical distance and peri-personal distance. In Study 4, I document the presence of different SNAs, driven by numerical magnitude and numerical distance, by employing different response mappings (left vs. right and near vs. distant). In the field of numerical cognition, the four studies included in the present thesis contribute to unveiling how the characteristics of the organism and the environment influence the emergence, the development, and the flexibility of our attitude to represent cardinal information across space, thus supporting the predictions of the embodied cognition approach. Furthermore, they inform a taxonomy of body-centred factors (biological properties of the brain and sensorimotor system) modulating the spatial representation of cardinality throughout the course of life, at the grounded, embodied, and situated levels. If the awareness for different variables influencing SNAs over the course of life is important, it is equally important to consider the organism as a whole in its sensorimotor interaction with the world. Inspired by my doctoral research, here I propose a holistic perspective that considers the role of evolution, embodiment, and environment in the association of cardinal information with directional space. The new perspective advances the current approaches to SNAs, both at the conceptual and at the methodological levels. Unveiling how the mental representation of cardinality emerges, develops, and adapts is necessary to shape efficient mathematical minds and achieve economic productivity, technological progress, and a higher quality of life.}, language = {en} } @phdthesis{Wojcik2024, author = {Wojcik, Laurie Anne Myriam}, title = {Beyond a single diversity facet: implications for the links between biodiversity, environmental changes and ecosystem functioning}, doi = {10.25932/publishup-64692}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-646925}, school = {Universit{\"a}t Potsdam}, pages = {vi, 189}, year = {2024}, abstract = {Human activities modify nature worldwide via changes in the environment, biodiversity and the functioning of ecosystems, which in turn disrupt ecosystem services and feed back negatively on humans. A pressing challenge is thus to limit our impact on nature, and this requires detailed understanding of the interconnections between the environment, biodiversity and ecosystem functioning. These three components of ecosystems each include multiple dimensions, which interact with each other in different ways, but we lack a comprehensive picture of their interconnections and underlying mechanisms. Notably, diversity is often viewed as a single facet, namely species diversity, while many more facets exist at different levels of biological organisation (e.g. genetic, phenotypic, functional, multitrophic diversity), and multiple diversity facets together constitute the raw material for adaptation to environmental changes and shape ecosystem functioning. Consequently, investigating the multidimensionality of ecosystems, and in particular the links between multifaceted diversity, environmental changes and ecosystem functions, is crucial for ecological research, management and conservation. This thesis aims to explore several aspects of this question theoretically. I investigate three broad topics in this thesis. First, I focus on how food webs with varying levels of functional diversity across three trophic levels buffer environmental changes, such as a sudden addition of nutrients or long-term changes (e.g. warming or eutrophication). I observed that functional diversity generally enhanced ecological stability (i.e. the buffering capacity of the food web) by increasing trophic coupling. More precisely, two aspects of ecological stability (resistance and resilience) increased even though a third aspect (the inverse of the time required for the system to reach its post-perturbation state) decreased with increasing functional diversity. Second, I explore how several diversity facets served as a raw material for different sources of adaptation and how these sources affected multiple ecosystem functions across two trophic levels. Considering several sources of adaptation enabled the interplay between ecological and evolutionary processes, which affected trophic coupling and thereby ecosystem functioning. Third, I reflect further on the multifaceted nature of diversity by developing an index K able to quantify the facet of functional diversity, which is itself multifaceted. K can provide a comprehensive picture of functional diversity and is a rather good predictor of ecosystem functioning. Finally I synthesise the interdependent mechanisms (complementarity and selection effects, trophic coupling and adaptation) underlying the relationships between multifaceted diversity, ecosystem functioning and the environment, and discuss the generalisation of my findings across ecosystems and further perspectives towards elaborating an operational biodiversity-ecosystem functioning framework for research and conservation.}, language = {en} } @phdthesis{Adam2024, author = {Adam, Jan P.}, title = {Top-Management-Support und die Digitalisierung von Verwaltungsleistungen}, doi = {10.25932/publishup-64713}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-647132}, school = {Universit{\"a}t Potsdam}, pages = {xii, 250}, year = {2024}, abstract = {Digitalization is a key component of current administrative reforms. Despite its high importance and long-standing efforts, the balance of administrative digitalization in Germany remains ambivalent. This study investigates the influencing factors on the implementation of digitalization projects in public administration, with a special focus on the role of top management support. This study focuses on three successful digitalization projects from the German Online Access Act (OZG) and analyzes, using problem-centered expert interviews, the influencing factors on the implementation of OZG projects and the role of management in this process. The analysis is theoretically grounded and based on the approach of bounded rationality and the economic theory of bureaucracy. The results suggest that the identified influencing factors affect the reusability and maturity level of administrative services differently and can be interpreted as consequences of bounded rationality in the human problem-solving process. Managers influence the bounded rationality of operational actors by implementing appropriate strategies in the support of their implementation tasks. This includes providing resources, contributing their expertise, making information accessible, changing decision-making pathways, and contributing to conflict resolution. The study provides valuable insights into actual management practices and derives recommendations for the implementation of public digitalization projects and the management of public administrations. This study makes an important contribution to understanding the influence of management in digitalization. It also underscores the need for further research in this area to better understand the practices and challenges of administrative digitalization and to effectively address them.}, language = {de} } @article{Wentker2024, author = {Wentker, Hermann}, title = {Zwischen F{\"o}deralismus und Zentralismus}, series = {Nationalstaat und F{\"o}deralismus}, journal = {Nationalstaat und F{\"o}deralismus}, editor = {Wirsching, Andreas and Lehmann, Lars}, publisher = {Campus Verlag}, address = {Frankfurt am Main}, isbn = {978-3-593-45486-3}, pages = {133 -- 152}, year = {2024}, language = {de} } @phdthesis{Haskamp2024, author = {Haskamp, Thomas}, title = {Products design organizations}, doi = {10.25932/publishup-64695}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-646954}, school = {Universit{\"a}t Potsdam}, pages = {IX, 148}, year = {2024}, abstract = {The automotive industry is a prime example of digital technologies reshaping mobility. Connected, autonomous, shared, and electric (CASE) trends lead to new emerging players that threaten existing industrial-aged companies. To respond, incumbents need to bridge the gap between contrasting product architecture and organizational principles in the physical and digital realms. Over-the-air (OTA) technology, that enables seamless software updates and on-demand feature additions for customers, is an example of CASE-driven digital product innovation. Through an extensive longitudinal case study of an OTA initiative by an industrial- aged automaker, this dissertation explores how incumbents accomplish digital product innovation. Building on modularity, liminality, and the mirroring hypothesis, it presents a process model that explains the triggers, mechanisms, and outcomes of this process. In contrast to the literature, the findings emphasize the primacy of addressing product architecture challenges over organizational ones and highlight the managerial implications for success.}, language = {en} } @article{KowalczykAmannStrefleretal.2024, author = {Kowalczyk, Katarzyna A. and Amann, Thorben and Strefler, Jessica and Vorrath, Maria-Elena and Hartmann, Jens and de Marco, Serena and Renforth, Phil and Foteinis, Spyros and Kriegler, Elmar}, title = {Marine carbon dioxide removal by alkalinization should no longer be overlooked}, series = {Environmental research letters}, volume = {19}, journal = {Environmental research letters}, number = {7}, publisher = {IOP Publishing}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ad5192}, pages = {12}, year = {2024}, abstract = {To achieve the Paris climate target, deep emissions reductions have to be complemented with carbon dioxide removal (CDR). However, a portfolio of CDR options is necessary to reduce risks and potential negative side effects. Despite a large theoretical potential, ocean-based CDR such as ocean alkalinity enhancement (OAE) has been omitted in climate change mitigation scenarios so far. In this study, we provide a techno-economic assessment of large-scale OAE using hydrated lime ('ocean liming'). We address key uncertainties that determine the overall cost of ocean liming (OL) such as the CO2 uptake efficiency per unit of material, distribution strategies avoiding carbonate precipitation which would compromise efficiency, and technology availability (e.g., solar calciners). We find that at economic costs of 130-295 \$/tCO2 net-removed, ocean liming could be a competitive CDR option which could make a significant contribution towards the Paris climate target. As the techno-economic assessment identified no showstoppers, we argue for more research on ecosystem impacts, governance, monitoring, reporting, and verification, and technology development and assessment to determine whether ocean liming and other OAE should be considered as part of a broader CDR portfolio.}, language = {en} } @phdthesis{Pregla2024, author = {Pregla, Andreas}, title = {Word order variability in OV languages}, doi = {10.25932/publishup-64363}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-643636}, school = {Universit{\"a}t Potsdam}, pages = {xv, 265}, year = {2024}, abstract = {This thesis explores word order variability in verb-final languages. Verb-final languages have a reputation for a high amount of word order variability. However, that reputation amounts to an urban myth due to a lack of systematic investigation. This thesis provides such a systematic investigation by presenting original data from several verb-final languages with a focus on four Uralic ones: Estonian, Udmurt, Meadow Mari, and South S{\´a}mi. As with every urban myth, there is a kernel of truth in that many unrelated verb-final languages share a particular kind of word order variability, A-scrambling, in which the fronted elements do not receive a special information-structural role, such as topic or contrastive focus. That word order variability goes hand in hand with placing focussed phrases further to the right in the position directly in front of the verb. Variations on this pattern are exemplified by Uyghur, Standard Dargwa, Eastern Armenian, and three of the Uralic languages, Estonian, Udmurt, and Meadow Mari. So far for the kernel of truth, but the fourth Uralic language, South S{\´a}mi, is comparably rigid and does not feature this particular kind of word order variability. Further such comparably rigid, non-scrambling verb-final languages are Dutch, Afrikaans, Amharic, and Korean. In contrast to scrambling languages, non-scrambling languages feature obligatory subject movement, causing word order rigidity next to other typical EPP effects. The EPP is a defining feature of South S{\´a}mi clause structure in general. South S{\´a}mi exhibits a one-of-a-kind alternation between SOV and SAuxOV order that is captured by the assumption of the EPP and obligatory movement of auxiliaries but not lexical verbs. Other languages that allow for SAuxOV order either lack an alternation because the auxiliary is obligatorily present (Macro-Sudan SAuxOVX languages), or feature an alternation between SVO and SAuxOV (Kru languages; V2 with underlying OV as a fringe case). In the SVO-SAuxOV languages, both auxiliaries and lexical verbs move. Hence, South S{\´a}mi shows that the textbook difference between the VO languages English and French, whether verb movement is restricted to auxiliaries, also extends to OV languages. SAuxOV languages are an outlier among OV languages in general but are united by the presence of the EPP. Word order variability is not restricted to the preverbal field in verb-final languages, as most of them feature postverbal elements (PVE). PVE challenge the notion of verb-finality in a language. Strictly verb-final languages without any clause-internal PVE are rare. This thesis charts the first structural and descriptive typology of PVE. Verb-final languages vary in the categories they allow as PVE. Allowing for non-oblique PVE is a pivotal threshold: when non-oblique PVE are allowed, PVE can be used for information-structural effects. Many areally and genetically unrelated languages only allow for given PVE but differ in whether the PVE are contrastive. In those languages, verb-finality is not at stake since verb-medial orders are marked. In contrast, the Uralic languages Estonian and Udmurt allow for any PVE, including information focus. Verb-medial orders can be used in the same contexts as verb-final orders without semantic and pragmatic differences. As such, verb placement is subject to actual free variation. The underlying verb-finality of Estonian and Udmurt can only be inferred from a range of diagnostics indicating optional verb movement in both languages. In general, it is not possible to account for PVE with a uniform analysis: rightwards merge, leftward verb movement, and rightwards phrasal movement are required to capture the cross- and intralinguistic variation. Knowing that a language is verb-final does not allow one to draw conclusions about word order variability in that language. There are patterns of homogeneity, such as the word order variability driven by directly preverbal focus and the givenness of postverbal elements, but those are not brought about by verb-finality alone. Preverbal word order variability is restricted by the more abstract property of obligatory subject movement, whereas the determinant of postverbal word order variability has to be determined in the future.}, language = {en} }