@misc{KuhlmannHeubergerDumas2021, author = {Kuhlmann, Sabine and Heuberger, Moritz and Dumas, Beno{\^i}t Paul}, title = {Kommunale Handlungsf{\"a}higkeit im europ{\"a}ischen Vergleich}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, number = {197}, editor = {Fleischer, Julia and Kuhlmann, Sabine}, isbn = {978-3-7489-2330-5}, issn = {1867-5808}, doi = {10.25932/publishup-56330}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563303}, pages = {126}, year = {2021}, abstract = {Die Rolle von Kommunen wird in diesem Buch einem europ{\"a}ischen Vergleich unterzogen. Dabei werden Kategorien wie kommunale Autonomie, Aufgabenprofile, territoriale und politische sowie finanzielle Rahmenbedingungen miteinander verglichen. Auch vergangene und bestehende Reformtrends und -diskurse werden beschrieben und eingeordnet. Die Studie ist eine umfassende Sekund{\"a}ranalyse und bereitet aktuelle Zahlen aus verschiedenen Quellen auf. Durchgef{\"u}hrt wurde sie von einem Team um Prof. Sabine Kuhlmann vom Lehrstuhl f{\"u}r Politikwissenschaft, Verwaltung und Organisation an der Universit{\"a}t Potsdam.}, language = {de} } @misc{GleichSpittaButleretal.2020, author = {Gleich, Tobias and Spitta, Gianna and Butler, Oisin and Zacharias, Kristin and Aydin, Semiha and Sebold, Miriam and Garbusow, Maria and Rapp, Michael A. and Schubert, Florian and Buchert, Ralph and Heinz, Andreas and Gallinat, J{\"u}rgen}, title = {Dopamine D2/3 receptor availability in alcohol use disorder and individuals at high risk}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {849}, issn = {1866-8364}, doi = {10.25932/publishup-54909}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549098}, pages = {12}, year = {2020}, abstract = {Alcohol use disorder (AUD) is the most common substance use disorder worldwide. Although dopamine-related findings were often observed in AUD, associated neurobiological mechanisms are still poorly understood. Therefore, in the present study, we investigate D2/3 receptor availability in healthy participants, participants at high risk (HR) to develop addiction (not diagnosed with AUD), and AUD patients in a detoxified stage, applying F-18-fallypride positron emission tomography (F-18-PET). Specifically, D2/3 receptor availability was investigated in (1) 19 low-risk (LR) controls, (2) 19 HR participants, and (3) 20 AUD patients after alcohol detoxification. Quality and severity of addiction were assessed with clinical questionnaires and (neuro)psychological tests. PET data were corrected for age of participants and smoking status. In the dorsal striatum, we observed significant reductions of D2/3 receptor availability in AUD patients compared with LR participants. Further, receptor availability in HR participants was observed to be intermediate between LR and AUD groups (linearly decreasing). Still, in direct comparison, no group difference was observed between LR and HR groups or between HR and AUD groups. Further, the score of the Alcohol Dependence Scale (ADS) was inversely correlated with D2/3 receptor availability in the combined sample. Thus, in line with a dimensional approach, striatal D2/3 receptor availability showed a linear decrease from LR participants to HR participants to AUD patients, which was paralleled by clinical measures. Our study shows that a core neurobiological feature in AUD seems to be detectable in an early, subclinical state, allowing more individualized alcohol prevention programs in the future.}, language = {en} } @misc{CodecoWeisTrumbulletal.2021, author = {Code{\c{c}}o, Marta S. and Weis, Philipp and Trumbull, Robert B. and Van Hinsberg, Vincent and Pinto, Filipe and Lecumberri-Sanchez, Pilar and Schleicher, Anja M.}, title = {The imprint of hydrothermal fluids on trace-element contents in white mica and tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1342}, issn = {1866-8372}, doi = {10.25932/publishup-51940}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519403}, pages = {481 -- 508}, year = {2021}, abstract = {White mica and tourmaline are the dominant hydrothermal alteration minerals at the world-class Panasqueira W-Sn-Cu deposit in Portugal. Thus, understanding the controls on their chemical composition helps to constrain ore formation processes at this deposit and determine their usefulness as pathfinder minerals for mineralization in general. We combine whole-rock geochemistry of altered and unaltered metasedimentary host rocks with in situ LA-ICP-MS measurements of tourmaline and white mica from the alteration halo. Principal component analysis (PCA) is used to better identify geochemical patterns and trends of hydrothermal alteration in the datasets. The hydrothermally altered metasediments are enriched in As, Sn, Cs, Li, W, F, Cu, Rb, Zn, Tl, and Pb relative to unaltered samples. In situ mineral analyses show that most of these elements preferentially partition into white mica over tourmaline (Li, Rb, Cs, Tl, W, and Sn), whereas Zn is enriched in tourmaline. White mica has distinct compositions in different settings within the deposit (greisen, vein selvages, wall rock alteration zone, late fault zone), indicating a compositional evolution with time. In contrast, tourmaline from different settings overlaps in composition, which is ascribed to a stronger dependence on host rock composition and also to the effects of chemical zoning and microinclusions affecting the LA-ICP-MS analyses. Hence, in this deposit, white mica is the better recorder of the fluid composition. The calculated trace-element contents of the Panasqueira mineralizing fluid based on the mica data and estimates of mica-fluid partition coefficients are in good agreement with previous fluid-inclusion analyses. A compilation of mica and tourmaline trace-element compositions from Panasqueira and other W-Sn deposits shows that white mica has good potential as a pathfinder mineral, with characteristically high Li, Cs, Rb, Sn, and W contents. The trace-element contents of hydrothermal tourmaline are more variable. Nevertheless, the compiled data suggest that high Sn and Li contents are distinctive for tourmaline from W-Sn deposits.}, language = {en} } @misc{ThirumalaikumarGorkaSchulzetal.2020, author = {Thirumalaikumar, Venkatesh P. and Gorka, Michal and Schulz, Karina and Masclaux-Daubresse, Celine and Sampathkumar, Arun and Skirycz, Aleksandra and Vierstra, Richard D. and Balazadeh, Salma}, title = {Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1343}, issn = {1866-8372}, doi = {10.25932/publishup-53818}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-538186}, pages = {2184 -- 2199}, year = {2020}, abstract = {In nature, plants are constantly exposed to many transient, but recurring, stresses. Thus, to complete their life cycles, plants require a dynamic balance between capacities to recover following cessation of stress and maintenance of stress memory. Recently, we uncovered a new functional role for macroautophagy/autophagy in regulating recovery from heat stress (HS) and resetting cellular memory of HS inArabidopsis thaliana. Here, we demonstrated that NBR1 (next to BRCA1 gene 1) plays a crucial role as a receptor for selective autophagy during recovery from HS. Immunoblot analysis and confocal microscopy revealed that levels of the NBR1 protein, NBR1-labeled puncta, and NBR1 activity are all higher during the HS recovery phase than before. Co-immunoprecipitation analysis of proteins interacting with NBR1 and comparative proteomic analysis of annbr1-null mutant and wild-type plants identified 58 proteins as potential novel targets of NBR1. Cellular, biochemical and functional genetic studies confirmed that NBR1 interacts with HSP90.1 (heat shock protein 90.1) and ROF1 (rotamase FKBP 1), a member of the FKBP family, and mediates their degradation by autophagy, which represses the response to HS by attenuating the expression ofHSPgenes regulated by the HSFA2 transcription factor. Accordingly, loss-of-function mutation ofNBR1resulted in a stronger HS memory phenotype. Together, our results provide new insights into the mechanistic principles by which autophagy regulates plant response to recurrent HS.}, language = {en} } @misc{TranBuiKappeletal.2020, author = {Tran, Quan Hong and Bui, Ngoc Hong and Kappel, Christian and Dau, Nga Thi Ngoc and Nguyen, Loan Thi and Tran, Thuy Thi and Khanh, Tran Dang and Trung, Khuat Huu and Lenhard, Michael and Vi, Son Lang}, title = {Mapping-by-sequencing via MutMap identifies a mutation in ZmCLE7 underlying fasciation in a newly developed EMS mutant population in an elite tropical maize inbred}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, issn = {1866-8372}, doi = {10.25932/publishup-51567}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515677}, pages = {16}, year = {2020}, abstract = {Induced point mutations are important genetic resources for their ability to create hypo- and hypermorphic alleles that are useful for understanding gene functions and breeding. However, such mutant populations have only been developed for a few temperate maize varieties, mainly B73 and W22, yet no tropical maize inbred lines have been mutagenized and made available to the public to date. We developed a novel Ethyl Methanesulfonate (EMS) induced mutation resource in maize comprising 2050 independent M2 mutant families in the elite tropical maize inbred ML10. By phenotypic screening, we showed that this population is of comparable quality with other mutagenized populations in maize. To illustrate the usefulness of this population for gene discovery, we performed rapid mapping-by-sequencing to clone a fasciated-ear mutant and identify a causal promoter deletion in ZmCLE7 (CLE7). Our mapping procedure does not require crossing to an unrelated parent, thus is suitable for mapping subtle traits and ones affected by heterosis. This first EMS population in tropical maize is expected to be very useful for the maize research community. Also, the EMS mutagenesis and rapid mapping-by-sequencing pipeline described here illustrate the power of performing forward genetics in diverse maize germplasms of choice, which can lead to novel gene discovery due to divergent genetic backgrounds.}, language = {en} } @phdthesis{Skiba2024, author = {Skiba, Vanessa}, title = {Alpine speleothems as recorders of glacier evolution}, doi = {10.25932/publishup-65537}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-655379}, school = {Universit{\"a}t Potsdam}, pages = {xx, 238}, year = {2024}, abstract = {The European Alps are amongst the regions with highest glacier mass loss rates over the last decades. Under the threat of ongoing climate change, the ability to predict glacier mass balance changes for water and risk management purposes has become imperative. This raises an urgent need for reliable glacier models. The European Alps do not only host glaciers, but also numerous caves containing carbonate formations, called speleothems. Previous studies have shown that those speleothems also grew during times when the cave was covered by a warm-based glacier. In this thesis, I utilise speleothems from the European Alps as archives of local, environmental conditions related to mountain glacier evolution. Previous studies have shown that speleothem isotope data from the Alps can be strongly affected by in-cave processes. Therefore, part of this thesis focusses on developing an isotope evolution model, which successfully reproduces differences between contemporaneous growing speleothems. The model is used to propose correction approaches for prior calcite precipitation effects on speleothem oxygen isotopes (δ18O). Applications on speleothem records from caves outside of the Alps demonstrate that corrected δ18O agrees better with other records and climate model simulations. Existing speleothem growth histories and carbon isotope (δ13C) records from Alpine caves located at different elevations are used to infer soil vs. glacier cover and the thermal regime of the glacier over the last glacial cycle. The compatibility with glacier evolution models is statistically assessed. A general agreement between speleothem δ13C-derived information on soil vs. glacier presence and modelled glacier coverage is found. However, glacier retreat during Marine Isotope Stage (MIS) 3 seems to be underestimated by the model. Furthermore, speleothem data provides evidence of surface temperature above the freezing point which is, however, not fully reproduced by the simulations. History of glacier cover and their thermal regime is explored for the high-elevation cave system Melchsee-Frutt in the Swiss Alps. Based on new (MIS 9b - MIS 7b, MIS 2) and available speleothem δ13C (MIS 7a - 5d) data, warm-based glacier cover is inferred for MIS 8, 7d, 6, and 2. Also a short period of cold-based ice coverage is found for early MIS 6. In a detailed multi-proxy analysis (δ18O, δ13C, Mg/Ca and Sr/Ca), millennial-scale changes in the glacier-related source of the water infiltrating in the karst during MIS 8 and 7d are found and linked to Northern Hemisphere climate variability. While speleothem records from high-elevation cave sites in the Alps exhibit huge potential for glacier reconstruction, several limitations remain, which are discussed throughout this thesis. Ultimately, recommendations are given to further leverage subglacial speleothems as an archive of glacier dynamics.}, language = {en} } @phdthesis{ElYoussoufi2024, author = {El Youssoufi, Dalal}, title = {Stellar populations, morphology and kinematics of the Magellanic clouds}, doi = {10.25932/publishup-65260}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-652607}, school = {Universit{\"a}t Potsdam}, pages = {xxiv, 163}, year = {2024}, abstract = {Galaxy morphology is a fossil record of how galaxies formed and evolved and can be regarded as a function of the dynamical state of a galaxy. It encodes the physical processes that dominate its evolutionary history, and is strongly aligned with physical properties like stellar mass, star formation rate and local environment. At a distance of ∼50 and 60 kpc, the Magellanic Clouds represent the nearest interacting pair of dwarf irregular galaxies to the Milky Way, rendering them an important test bed for galaxy morphology in the context of galaxy interactions and the effect of the local environment in which they reside. The Large Magellanic Cloud is classified as the prototype for Magellanic Spiral galaxies, with one prominent spiral arm, an offset bar and an inclined rotating disc while the Small Magellanic Cloud is classified as a dwarf Irregular galaxy and is known for its unstructured shape and large depth across the line-of-sight. Resolved stellar populations are powerful probes of a wide range of astrophysical phenomena, the proximity of the Magellanic Clouds allows us to resolve their stellar populations to individual stars that share coherent chemical and age distributions. The coherent properties of resolved stellar populations enable us to analyse them as a function of position within the Magellanic Clouds, offering a picture of the growth of the galaxies' substructures over time and yielding a comprehensive view of their morphology. Furthermore, investigating the kinematics of the Magellanic Clouds offers valuable insights into their dynamics and evolutionary history. By studying the motions and velocities of stars within these galaxies, we can trace their past interactions, with the Milky Way or with each other and unravel the complex interplay of forces that have influenced the Magellanic Clouds' formation and evolution. In Chapter 2, the VISTA survey of the Magellanic Clouds was employed to generate unprecedented high-resolution morphological maps of the Magellanic Clouds in the near-infrared. Utilising colour-magnitude diagrams and theoretical evolutionary models to segregate stellar populations, this approach enabled a comprehensive age tomography of the galaxies. It revealed previously uncharacterised features in their central regions at spatial resolutions of 0.13 kpc (Large Magellanic Cloud) and 0.16 kpc (Small Magellanic Cloud), the findings showcased the impact of tidal interactions on their inner regions. Notably, the study highlighted the enhanced coherent structures in the Large Magellanic Cloud, shedding light on the significant role of the recent Magellanic Clouds' interaction 200 Myr ago in shaping many of the fine structures. The Small Magellanic Cloud revealed asymmetry in younger populations and irregularities in intermediate-age ones, pointing towards the influence of past tidal interactions. In Chapter 3, an examination of the outskirts of the Magellanic Clouds led to the identification of new substructures through the use of near-infrared photometry from the VISTA Hemisphere Survey and multi-dimensional phase-space information from Gaia. The distances and proper motions of these substructures were investigated. This analysis revealed the impact of past Magellanic Clouds' interactions and the influence of the Milky Way's tidal field on the morphology and kinematics of the Magellanic Clouds. A bi-modal distance distribution was identified within the luminosity function of the red clump stars in the Small Magellanic Cloud, notably in its eastern regions, with the foreground substructure being attributed to the Magellanic Clouds' interaction around 200 Myr ago. Furthermore, associations with the Counter Bridge and Old Bridge were uncovered through the detection of background and foreground structures in various regions of the SMC. In chapter 4, a detailed kinematic analysis of the Small Magellanic Cloud was conducted using spectra from the European Southern Observatory Science Archive Facility. The study reveals distinct kinematics in the Wing and bar regions, attributed to interactions with the Large Magellanic Cloud and variations in star formation history. Notably, velocity disparities are observed in the bar's young main sequence stars, aligning with specific star-forming episodes, and suggesting potential galactic stretching or tidal stripping, as corroborated by proper motion studies.}, language = {en} } @phdthesis{Noureen2024, author = {Noureen, Riffat}, title = {The dark side of empowering leadership}, doi = {10.25932/publishup-65531}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-655318}, school = {Universit{\"a}t Potsdam}, pages = {174}, year = {2024}, abstract = {As followers are becoming more educated and better connected, empowering leadership has gained traction in recent times as an alternative to traditional top-down models of leadership. Several scholars have investigated the relationship between empowering leadership and other variables in different contexts. As most previous studies have focused on the positive aspects of empowering leadership, research on its potential dark side is scarce. Furthermore, no previous study has examined whether and how the transfer of workload from followers to leaders can occur over time, which I proposed can lead to emotional exhaustion and work-family conflict among leaders. Therefore, I proposed that despite the positive outcomes of empowering leadership for both followers and leaders, it may also trigger negative outcomes capable of affecting the well-being of leaders. Drawing on the Conservation of Resources (COR) theory, Job Demand-Resources (JD-R) theory, and Too-Much-of-a-Good-Thing (TMGT) effect model, I investigated this idea. Using follower workload as a moderator, I proposed that the relationship between empowering leadership and leader workload is positive when follower workload is high and negative when follower workload is low. In addition, I examined how empowering leadership interacts with follower workload to affect leader emotional exhaustion and work-family conflict, mediated by leader workload. I proposed that this interaction results in a negative relationship between empowering leadership and both outcomes when follower workload is low, and a positive relationship when it is high. I tested these hypotheses using data from a three-wave time-lagged design field study with 65 leader-follower dyads consisting of civil servants from different administrative entities of India and Pakistan. The time lag between each study variable was four weeks. At Time 1 (T1), followers answered questions about demographic characteristics, virtual interaction with their leaders, their workload, and the extent to which their leaders practice empowering leadership. At the same time, leaders answered questions about demographic characteristics and their job satisfaction. At Time 2 (T2), leaders provided data on their own workload. Finally, at Time 3 (T3), leaders rated their emotional exhaustion and work-family conflict. A moderated mediation model was tested using PROCESS Model 7 in R. The findings of the study reveal that a significant increase in follower workload through empowering leadership will also increase the leader's workload. Consequently, this increased leader workload leads to a crossover of this interactive effect onto the level of emotional exhaustion and work-family conflict experienced by leaders. This research offers various contributions to the leadership literature. While empowering leadership has been commonly associated with positive outcomes, my study reveals that it can also lead to negative outcomes. In addition, it shifts the focus of existing research from the effect of empowering leadership on followers to the consequences that it might have for leaders themselves. Overall, my research underscores the need for leaders to consider the potential counterproductive effects of empowering leadership and tailor their approach accordingly.}, language = {en} } @article{TritschlerDelgadoLopezUmbachetal.2022, author = {Tritschler, Ulrich and Delgado L{\´o}pez, Jos{\´e} Manuel and Umbach, Tobias R. and Van Driessche, Alexander E. S. and Schlaad, Helmut and C{\"o}lfen, Helmut and Kellermeier, Matthias}, title = {Oriented attachment and aggregation as a viable pathway to self-assembled organic/inorganic hybrid materials}, series = {CrystEngComm}, volume = {24}, journal = {CrystEngComm}, number = {36}, publisher = {Royal Society of Chemistry}, address = {London}, issn = {1466-8033}, doi = {10.1039/d2ce00447j}, pages = {6320 -- 6329}, year = {2022}, abstract = {Organic-inorganic composite materials with tailored properties can be designed in the lab through bioinspired approaches. In this context, we exploited the particle-based crystallisation process of calcium sulfate, a technologically important mineral, to hybridise inorganic and organic matter. We identified and synthesised an organic polymer showing strong affinity to bind to the surfaces of mineral precursors as well as intrinsic tendency to self-organise. Subsequently, polymer-coated building units were allowed to self-assemble via oriented attachment, aggregation and phase transformation, which produced ordered superstructures where the organic polymer is intercalated between the subunits and surrounds the hybrid core as a shell. This specific architecture across multiple length scales leads to unique mechanical properties, comparable to those of natural biominerals. Thus, our results devise a straightforward pathway to prepare organic-inorganic hybrid structures via bottom-up self-assembly processes innate to the crystallisation of the inorganic phase. This approach can likely be transferred to other inorganic minerals, affording next-generation materials for applications in the construction sector, biomedicine and beyond.}, language = {en} } @phdthesis{FernandezPalomino2024, author = {Fernandez Palomino, Carlos Antonio}, title = {Understanding hydrological dynamics in the tropical Andes of Peru and Ecuador and their responses to climate change}, doi = {10.25932/publishup-65653}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-656534}, school = {Universit{\"a}t Potsdam}, pages = {160}, year = {2024}, abstract = {Human-induced climate change is impacting the global water cycle by, e.g., causing changes in precipitation patterns, evapotranspiration dynamics, cryosphere shrinkage, and complex streamflow trends. These changes, coupled with the increased frequency and severity of extreme hydrometeorological events like floods, droughts, and heatwaves, contribute to hydroclimatic disasters, posing significant implications for local and global infrastructure, human health, and overall productivity. In the tropical Andes, climate change is evident through warming trends, glacier retreats, and shifts in precipitation patterns, leading to altered risks of floods and droughts, e.g., in the upper Amazon River basin. Projections for the region indicate rising temperatures, potential glacier disappearance or substantial shrinkage, and altered streamflow patterns, highlighting challenges in water availability due to these expected changes and growing human water demand. The evolving trends in hydroclimatic conditions in the tropical Andes present significant challenges to socioeconomic and environmental systems, emphasizing the need for a comprehensive understanding to guide effective adaptation policies and strategies in response to the impacts of climate change in the region. The main objective of this thesis is to investigate current hydrological dynamics in the tropical Andes of Peru and Ecuador and their responses to climate change. Given the scarcity of hydrometeorological data in the region, this objective was accomplished through a comprehensive data preparation and analysis in combination with hydrological modeling using the Soil and Water Assessment Tool (SWAT) eco-hydrological model. In this context, the initial steps involved assessing, identifying, and/or generating more reliable climate input data to address data limitations. The thesis introduces RAIN4PE, a high-resolution precipitation dataset for Peru and Ecuador, developed by merging satellite, reanalysis, and ground-based data with surface elevation through the random forest method. Further adjustments of precipitation estimates were made for catchments influenced by fog/cloud water input on the eastern side of the Andes using streamflow data and applying the method of reverse hydrology. RAIN4PE surpasses other global and local precipitation datasets, showcasing superior reliability and accuracy in representing precipitation patterns and simulating hydrological processes across the tropical Andes. This establishes it as the optimal precipitation product for hydrometeorological applications in the region. Due to the significant biases and limitations of global climate models (GCMs) in representing key atmospheric variables over the tropical Andes, this study developed regionally adapted GCM simulations specifically tailored for Peru and Ecuador. These simulations are known as the BASD-CMIP6-PE dataset, and they were derived using reliable, high-resolution datasets like RAIN4PE as reference data. The BASD-CMIP6-PE dataset shows notable improvements over raw GCM simulations, reflecting enhanced representations of observed climate properties and accurate simulation of streamflow, including high and low flow indices. This renders it suitable for assessing regional climate change impacts on agriculture, water resources, and hydrological extremes. In addition to generating more accurate climatic input data, a reliable hydrological model is essential for simulating watershed hydrological processes. To tackle this challenge, the thesis presents an innovative multiobjective calibration framework integrating remote sensing vegetation data, baseflow index, discharge goodness-of-fit metrics, and flow duration curve signatures. In contrast to traditional calibration strategies relying solely on discharge goodness-of-fit metrics, this approach enhances the simulation of vegetation, streamflow, and the partitioning of flow into surface runoff and baseflow in a typical Andean catchment. The refined hydrological model calibration strategy was applied to conduct reliable simulations and understand current and future hydrological trajectories in the tropical Andes. By establishing a region-suitable and thoroughly tested hydrological model with high-resolution and reliable precipitation input data from RAIN4PE, this study provides new insights into the spatiotemporal distribution of water balance components in Peru and transboundary catchments. Key findings underscore the estimation of Peru's total renewable freshwater resource (total river runoff of 62,399 m3/s), with the Peruvian Amazon basin contributing 97.7\%. Within this basin, the Amazon-Andes transition region emerges as a pivotal hotspot for water yield (precipitation minus evapotranspiration), characterized by abundant rainfall and lower atmospheric water demand/evapotranspiration. This finding underlines its paramount role in influencing the hydrological variability of the entire Amazon basin. Subsurface hydrological pathways, particularly baseflow from aquifers, strongly influence water yield in lowland and Andean catchments, sustaining streamflow, especially during the extended dry season. Water yield demonstrates an elevation- and latitude-dependent increase in the Pacific Basin (catchments draining into the Pacific Ocean), while it follows an unimodal curve in the Peruvian Amazon Basin, peaking in the Amazon-Andes transition region. This observation indicates an intricate relationship between water yield and elevation. In Amazon lowlands rivers, particularly in the Ucayali River, floodplains play a significant role in shaping streamflow seasonality by attenuating and delaying peak flows for up to two months during periods of high discharge. This observation underscores the critical importance of incorporating floodplain dynamics into hydrological simulations and river management strategies for accurate modeling and effective water resource management. Hydrological responses vary across different land use types in high Andean catchments. Pasture areas exhibit the highest water yield, while agricultural areas and mountain forests show lower yields, emphasizing the importance of puna (high-altitude) ecosystems, such as pastures, p{\´a}ramos, and bofedales, in regulating natural storage. Projected future hydrological trajectories were analyzed by driving the hydrological model with regionalized GCM simulations provided by the BASD-CMIP6-PE dataset. The analysis considered sustainable (low warming, SSP1-2.6) and fossil fuel-based development (high-end warming, SSP5-8.5) scenarios for the mid (2035-2065) and end (2065-2095) of the century. The projected changes in water yield and streamflow across the tropical Andes exhibit distinct regional and seasonal variations, particularly amplified under a high-end warming scenario towards the end of the century. Projections suggest year-round increases in water yield and streamflow in the Andean regions and decreases in the Amazon lowlands, with exceptions such as the northern Amazon expecting increases during wet seasons. Despite these regional differences, the upper Amazon River's streamflow is projected to remain relatively stable throughout the 21st century. Additionally, projections anticipate a decrease in low flows in the Amazon lowlands and an increased risk of high flows (floods) in the Andean and northern Amazon catchments. This thesis significantly contributes to enhancing climatic data generation, overcoming regional limitations that previously impeded hydrometeorological research, and creating new opportunities. It plays a crucial role in advancing hydrological model calibration, improving the representation of internal hydrological processes, and achieving accurate results for the right reasons. Novel insights into current hydrological dynamics in the tropical Andes are fundamental for improving water resource management. The anticipated intensified changes in water flows and hydrological extreme patterns under a high-end warming scenario highlight the urgency of implementing emissions mitigation and adaptation measures to address the heightened impacts on water resources. In fact, the new datasets (RAIN4PE and BASD-CMIP6-PE) have already been utilized by researchers and experts in regional and local-scale projects and catchments in Peru and Ecuador. For instance, they have been applied in river catchments such as Mantaro, Piura, and San Pedro to analyze local historical and future developments in climate and water resources.}, language = {en} }