@misc{PalyulinBlackburnLomholtetal.2019, author = {Palyulin, Vladimir V and Blackburn, George and Lomholt, Michael A and Watkins, Nicholas W and Metzler, Ralf and Klages, Rainer and Chechkin, Aleksei V.}, title = {First passage and first hitting times of L{\´e}vy flights and L{\´e}vy walks}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {785}, issn = {1866-8372}, doi = {10.25932/publishup-43983}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439832}, pages = {25}, year = {2019}, abstract = {For both L{\´e}vy flight and L{\´e}vy walk search processes we analyse the full distribution of first-passage and first-hitting (or first-arrival) times. These are, respectively, the times when the particle moves across a point at some given distance from its initial position for the first time, or when it lands at a given point for the first time. For L{\´e}vy motions with their propensity for long relocation events and thus the possibility to jump across a given point in space without actually hitting it ('leapovers'), these two definitions lead to significantly different results. We study the first-passage and first-hitting time distributions as functions of the L{\´e}vy stable index, highlighting the different behaviour for the cases when the first absolute moment of the jump length distribution is finite or infinite. In particular we examine the limits of short and long times. Our results will find their application in the mathematical modelling of random search processes as well as computer algorithms.}, language = {en} } @article{ArchambaultArcherBenbowetal.2017, author = {Archambault, S. and Archer, A. and Benbow, W. and Buchovecky, M. and Bugaev, V. and Cerruti, M. and Connolly, M. P. and Cui, W. and Falcone, A. and Alonso, M. Fernandez and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Griffin, S. and Hutten, M. and Hervet, O. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kieda, D. and Krause, M. and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and Moriarty, P. and Nieto, D. and Ong, R. A. and Otte, A. N. and Pohl, M. and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Sadeh, I. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Weisgarber, T. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Search for Magnetically Broadened Cascade Emission from Blazars with VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {835}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/835/2/288}, pages = {12}, year = {2017}, abstract = {We present a search for magnetically broadened gamma-ray emission around active galactic nuclei (AGNs), using VERITAS observations of seven hard-spectrum blazars. A cascade process occurs when multi-TeV gamma-rays from an AGN interact with extragalactic background light (EBL) photons to produce electron-positron pairs, which then interact with cosmic microwave background photons via inverse-Compton scattering to produce gamma-rays. Due to the deflection of the electron- positron pairs, a non-zero intergalactic magnetic field (IGMF) would potentially produce detectable effects on the angular distribution of the cascade emission. In particular, an angular broadening compared to the unscattered emission could occur. Through non-detection of angularly broadened emission from 1ES 1218 vertical bar 304, the source with the largest predicted cascade fraction, we exclude a range of IGMF strengths around 10(-14) G at the 95\% confidence level. The extent of the exclusion range varies with the assumptions made about the intrinsic spectrum of 1ES. 1218+304 and the EBL model used in the simulation of the cascade process. All of the sources are used to set limits on the flux due to extended emission.}, language = {en} } @article{AydinerCherstvyMetzler2019, author = {Aydiner, Ekrem and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Money distribution in agent-based models with position-exchange dynamics}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {92}, journal = {The European physical journal : B, Condensed matter and complex systems}, number = {5}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2019-90674-0}, pages = {4}, year = {2019}, abstract = {Wealth and income distributions are known to feature country-specific Pareto exponents for their long power-law tails. To propose a rationale for this, we introduce an agent-based dynamic model and use Monte Carlo simulations to unveil the wealth distributions in closed and open economical systems. The standard money-exchange scenario is supplemented with the position-exchange agent dynamics that vitally affects the Pareto law. Specifically, in closed systems with position-exchange dynamics the power law changes to an exponential shape, while for open systems with traps the Pareto law remains valid.}, language = {en} } @article{TyFangGonzalezetal.2019, author = {Ty, Alexander J. A. and Fang, Zheng and Gonzalez, Rivver A. and Rozdeba, Paul J. and Abarbanel, Henry D.}, title = {Machine learning of time series using time-delay embedding and precision annealing}, series = {Neural Computation}, volume = {31}, journal = {Neural Computation}, number = {10}, publisher = {MIT Press}, address = {Cambridge}, issn = {0899-7667}, doi = {10.1162/neco_a_01224}, pages = {2004 -- 2024}, year = {2019}, abstract = {Tasking machine learning to predict segments of a time series requires estimating the parameters of a ML model with input/output pairs from the time series. We borrow two techniques used in statistical data assimilation in order to accomplish this task: time-delay embedding to prepare our input data and precision annealing as a training method. The precision annealing approach identifies the global minimum of the action (-log[P]). In this way, we are able to identify the number of training pairs required to produce good generalizations (predictions) for the time series. We proceed from a scalar time series s(tn);tn=t0+n Delta t and, using methods of nonlinear time series analysis, show how to produce a DE>1-dimensional time-delay embedding space in which the time series has no false neighbors as does the observed s(tn) time series. In that DE-dimensional space, we explore the use of feedforward multilayer perceptrons as network models operating on DE-dimensional input and producing DE-dimensional outputs.}, language = {en} } @article{PowierzaGollwitzerWolgastetal.2019, author = {Powierza, Bartosz and Gollwitzer, Christian and Wolgast, Dagmar and Staude, Andreas and Bruno, Giovanni}, title = {Fully experiment-based evaluation of few digital volume correlation techniques}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {90}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, number = {11}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0034-6748}, doi = {10.1063/1.5099572}, pages = {10}, year = {2019}, abstract = {Digital Volume Correlation (DVC) is a powerful set of techniques used to compute the local shifts of 3D images obtained, for instance, in tomographic experiments. It is utilized to analyze the geometric changes of the investigated object as well as to correct the corresponding image misalignments for further analysis. It can therefore be used to evaluate the local density changes of the same regions of the inspected specimens, which might be shifted between measurements. In recent years, various approaches and corresponding pieces of software were introduced. Accuracies for the computed shift vectors of up to about 1 parts per thousand of a single voxel size have been reported. These results, however, were based either on synthetic datasets or on an unrealistic setup. In this work, we propose two simple methods to evaluate the accuracy of DVC-techniques using more realistic input data and apply them to several DVC programs. We test these methods on three materials (tuff, sandstone, and concrete) that show different contrast and structural features. Published under license by AIP Publishing.}, language = {en} } @phdthesis{Hanf2015, author = {Hanf, Franziska Stefanie}, title = {South Asian summer monsoon variability: a modelling study with the atmospheric regional climate model HIRHAM5}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89331}, school = {Universit{\"a}t Potsdam}, pages = {ii, 126}, year = {2015}, abstract = {The lives of more than 1/6 th of the world population is directly affected by the caprices of the South Asian summer monsoon rainfall. India receives around 78 \% of the annual precipitation during the June-September months, the summer monsoon season of South Asia. But, the monsoon circulation is not consistent throughout the entire summer season. Episodes of heavy rainfall (active periods) and low rainfall (break periods) are inherent to the intraseasonal variability of the South Asian summer monsoon. Extended breaks or long-lasting dryness can result in droughts and hence trigger crop failures and in turn famines. Furthermore, India's electricity generation from renewable sources (wind and hydro-power), which is increasingly important in order to satisfy the rapidly rising demand for energy, is highly reliant on the prevailing meteorology. The major drought years 2002 and 2009 for the Indian summer monsoon during the last decades, which are results of the occurrence of multiple extended breaks, emphasise exemplary that the understanding of the monsoon system and its intraseasonal variation is of greatest importance. Although, numerous studies based on observations, reanalysis data and global model simulations have been carried out with the focus on monsoon active and break phases over India, the understanding of the monsoon intraseasonal variability is only in the infancy stage. Regional climate models could benefit the comprehension of monsoon breaks by its resolution advantage. This study investigates moist dynamical processes that initiate and maintain breaks during the South Asian summer monsoon using the atmospheric regional climate model HIRHAM5 at a horizontal resolution of 25 km forced by the ECMWF ERA Interim reanalysis for the period 1979-2012. By calculating moisture and moist static energy budgets the various competing mechanisms leading to extended breaks are quantitatively estimated. Advection of dry air from the deserts of western Asia towards central India is the dominant moist dynamical process in initiating extended break conditions over South Asia. Once initiated, the extended breaks are maintained due to many competing mechanisms: (i) the anomalous easterlies at the southern flank of this anticyclonic anomaly weaken the low-level cross-equatorial jet and thus the moisture transport into the monsoon region, (ii) differential radiative heating over the continental and the oceanic tropical convergence zone induces a local Hadley circulation with anomalous rising over the equatorial Indian Ocean and descent over central India, and (iii) a cyclonic response to positive rainfall anomalies over the near-equatorial Indian Ocean amplifies the anomalous easterlies over India and hence contributes to the low-level divergence over central India. A sensitivity experiment that mimics a scenario of higher atmospheric aerosol concentrations over South Asia addresses a current issue of large uncertainty: the role aerosols play in suppressing monsoon rainfall and hence in triggering breaks. To study the indirect aerosol effects the cloud droplet number concentration was increased to imitate the aerosol's function as cloud condensation nuclei. The sensitivity experiment with altered microphysical cloud properties shows a reduction in the summer monsoon precipitation together with a weakening of the South Asian summer monsoon. Several physical mechanisms are proposed to be responsible for the suppressed monsoon rainfall: (i) according to the first indirect radiative forcing the increase in the number of cloud droplets causes an increase in the cloud reflectivity of solar radiation, leading to a climate cooling over India which in turn reduces the hydrological cycle, (ii) a stabilisation of the troposphere induced by a differential cooling between the surface and the upper troposphere over central India inhibits the growth of deep convective rain clouds, (iii) an increase of the amount of low and mid-level clouds together with a decrease in high-level cloud amount amplify the surface cooling and hence the atmospheric stability, and (iv) dynamical changes of the monsoon manifested as a anomalous anticyclonic circulation over India reduce the moisture transport into the monsoon region. The study suggests that the changes in the total precipitation, which are dominated by changes in the convective precipitation, mainly result from the indirect radiative forcing. Suppression of rainfall due to the direct microphysical effect is found to be negligible over India. Break statistics of the polluted cloud scenario indicate an increase in the occurrence of short breaks (3 days), while the frequency of extended breaks (> 7 days) is clearly not affected. This disproves the hypothesis that more and smaller cloud droplets, caused by a high load of atmospheric aerosols trigger long drought conditions over central India.}, language = {en} } @article{TyulkinaGoldobinKlimenkoetal.2018, author = {Tyulkina, Irina and Goldobin, Denis S. and Klimenko, Lyudmila S. and Pikovskij, Arkadij}, title = {Dynamics of noisy oscillator populations beyond the Ott-Antonsen Ansatz}, series = {Physical review letters}, volume = {120}, journal = {Physical review letters}, number = {26}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.120.264101}, pages = {6}, year = {2018}, abstract = {We develop an approach for the description of the dynamics of large populations of phase oscillators based on "circular cumulants" instead of the Kuramoto-Daido order parameters. In the thermodynamic limit, these variables yield a simple representation of the Ott-Antonsen invariant solution [E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008)] and appear appropriate for constructing perturbation theory on top of the Ott-Antonsen ansatz. We employ this approach to study the impact of small intrinsic noise on the dynamics. As a result, a closed system of equations for the two leading cumulants, describing the dynamics of noisy ensembles, is derived. We exemplify the general theory by presenting the effect of noise on the Kuramoto system and on a chimera state in two symmetrically coupled populations.}, language = {en} } @article{PohlMaciasColemanetal.2022, author = {Pohl, Martin and Macias, Oscar and Coleman, Phaedra and Gordon, Chris}, title = {Assessing the impact of hydrogen absorption on the characteristics of the Galactic center excess}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {929}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ac6032}, pages = {13}, year = {2022}, abstract = {We present a new reconstruction of the distribution of atomic hydrogen in the inner Galaxy that is based on explicit radiation transport modeling of line and continuum emission and a gas-flow model in the barred Galaxy that provides distance resolution for lines of sight toward the Galactic center. The main benefits of the new gas model are (a) the ability to reproduce the negative line signals seen with the HI4PI survey and (b) the accounting for gas that primarily manifests itself through absorption. We apply the new model of Galactic atomic hydrogen to an analysis of the diffuse gamma-ray emission from the inner Galaxy, for which an excess at a few GeV was reported that may be related to dark matter. We find with high significance an improved fit to the diffuse gamma-ray emission observed with the Fermi-LAT, if our new H i model is used to estimate the cosmic-ray induced diffuse gamma-ray emission. The fit still requires a nuclear bulge at high significance. Once this is included there is no evidence of a dark-matter signal, be it cuspy or cored. But an additional so-called boxy bulge is still favored by the data. This finding is robust under the variation of various parameters, for example, the excitation temperature of atomic hydrogen, and a number of tests for systematic issues.}, language = {en} } @article{BenduhnPiersimoniLondietal.2018, author = {Benduhn, Johannes and Piersimoni, Fortunato and Londi, Giacomo and Kirch, Anton and Widmer, Johannes and Koerner, Christian and Beljonne, David and Neher, Dieter and Spoltore, Donato and Vandewal, Koen}, title = {Impact of triplet excited states on the open-circuit voltage of organic solar cells}, series = {dvanced energy materials}, volume = {8}, journal = {dvanced energy materials}, number = {21}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201800451}, pages = {7}, year = {2018}, abstract = {The best organic solar cells (OSCs) achieve comparable peak external quantum efficiencies and fill factors as conventional photovoltaic devices. However, their voltage losses are much higher, in particular those due to nonradiative recombination. To investigate the possible role of triplet states on the donor or acceptor materials in this process, model systems comprising Zn- and Cu-phthalocyanine (Pc), as well as fluorinated versions of these donors, combined with C-60 as acceptor are studied. Fluorination allows tuning the energy level alignment between the lowest energy triplet state (T-1) and the charge-transfer (CT) state, while the replacement of Zn by Cu as the central metal in the Pcs leads to a largely enhanced spin-orbit coupling. Only in the latter case, a substantial influence of the triplet state on the nonradiative voltage losses is observed. In contrast, it is found that for a large series of typical OSC materials, the relative energy level alignment between T-1 and the CT state does not substantially affect nonradiative voltage losses.}, language = {en} } @article{RosenblumPikovsky2023, author = {Rosenblum, Michael and Pikovsky, Arkady}, title = {Inferring connectivity of an oscillatory network via the phase dynamics reconstruction}, series = {Frontiers in network physiology}, volume = {3}, journal = {Frontiers in network physiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2674-0109}, doi = {10.3389/fnetp.2023.1298228}, pages = {10}, year = {2023}, abstract = {We review an approach for reconstructing oscillatory networks' undirected and directed connectivity from data. The technique relies on inferring the phase dynamics model. The central assumption is that we observe the outputs of all network nodes. We distinguish between two cases. In the first one, the observed signals represent smooth oscillations, while in the second one, the data are pulse-like and can be viewed as point processes. For the first case, we discuss estimating the true phase from a scalar signal, exploiting the protophase-to-phase transformation. With the phases at hand, pairwise and triplet synchronization indices can characterize the undirected connectivity. Next, we demonstrate how to infer the general form of the coupling functions for two or three oscillators and how to use these functions to quantify the directional links. We proceed with a different treatment of networks with more than three nodes. We discuss the difference between the structural and effective phase connectivity that emerges due to high-order terms in the coupling functions. For the second case of point-process data, we use the instants of spikes to infer the phase dynamics model in the Winfree form directly. This way, we obtain the network's coupling matrix in the first approximation in the coupling strength.}, language = {en} } @article{ZapataArteagaMarinaZuoetal.2022, author = {Zapata-Arteaga, Osnat and Marina, Sara and Zuo, Guangzheng and Xu, Kai and D{\"o}rling, Bernhard and Alberto P{\´e}rez, Luis and Sebasti{\´a}n Reparaz, Juan and Mart{\´i}n, Jaime and Kemerink, Martijn and Campoy-Quiles, Mariano}, title = {Design rules for polymer blends with high thermoelectric performance}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {19}, publisher = {Wiley}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202104076}, pages = {11}, year = {2022}, abstract = {A combinatorial study of the effect of in-mixing of various guests on the thermoelectric properties of the host workhorse polymer poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) is presented. Specifically, the composition and thickness for doped films of PBTTT blended with different polymers are varied. Some blends at guest weight fractions around 10-15\% exhibit up to a fivefold increase in power factor compared to the reference material, leading to zT values around 0.1. Spectroscopic analysis of the charge-transfer species, structural characterization using grazing-incidence wide-angle X-ray scattering, differential scanning calorimetry, Raman, and atomic force microscopy, and Monte Carlo simulations are employed to determine that the key to improved performance is for the guest to promote long-range electrical connectivity and low disorder, together with similar highest occupied molecular orbital levels for both materials in order to ensure electronic connectivity are combined.}, language = {en} } @article{SidoliSgueraEspositoetal.2022, author = {Sidoli, Lara and Sguera, Vito and Esposito, Paolo and Oskinova, Lidia M. and Polletta, Maria del Carmen}, title = {XMM-Newton discovery of very high obscuration in the candidate Supergiant Fast X-ray Transient AX J1714.1-3912}, series = {Monthly notices of the Royal Astronomical Society}, volume = {512}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac691}, pages = {2929 -- 2935}, year = {2022}, abstract = {We have analysed an archival XMM-Newton EPIC observation that serendipitously covered the sky position of a variable X-ray source AX J1714.1-3912, previously suggested to be a Supergiant Fast X-ray Transient (SFXT). During the XMM-Newton observation the source is variable on a timescale of hundred seconds and shows two luminosity states, with a flaring activity followed by unflared emission, with a variability amplitude of a factor of about 50. We have discovered an intense iron emission line with a centroid energy of 6.4 keV in the power law-like spectrum, modified by a large absorption (N-H similar to 10(24) cm(-2)), never observed before from this source. This X-ray spectrum is unusual for an SFXT, but resembles the so-called 'highly obscured sources', high mass X-ray binaries (HMXBs) hosting an evolved B[e] supergiant companion (sgB[e]). This might suggest that AX J1714.1-3912 is a new member of this rare type of HMXBs, which includes IGR J16318-4848 and CI Camelopardalis. Increasing this small population of sources would be remarkable, as they represent an interesting short transition evolutionary stage in the evolution of massive binaries. Nevertheless, AX J1714.1-3912 appears to share X-ray properties of both kinds of HMXBs (SFXT versus sgB[e] HMXB). Therefore, further investigations of the companion star are needed to disentangle the two hypothesis.}, language = {en} } @article{StojkoskiJolakoskiPaletal.2022, author = {Stojkoski, Viktor and Jolakoski, Petar and Pal, Arnab and Sandev, Trifce and Kocarev, Ljupco and Metzler, Ralf}, title = {Income inequality and mobility in geometric Brownian motion with stochastic resetting: theoretical results and empirical evidence of non-ergodicity}, series = {Philosophical transactions of the Royal Society A: Mathematical, physical and engineering sciences}, volume = {380}, journal = {Philosophical transactions of the Royal Society A: Mathematical, physical and engineering sciences}, number = {2224}, publisher = {Royal Society}, address = {London}, issn = {1364-503X}, doi = {10.1098/rsta.2021.0157}, pages = {17}, year = {2022}, abstract = {We explore the role of non-ergodicity in the relationship between income inequality, the extent of concentration in the income distribution, and income mobility, the feasibility of an individual to change their position in the income rankings. For this purpose, we use the properties of an established model for income growth that includes 'resetting' as a stabilizing force to ensure stationary dynamics. We find that the dynamics of inequality is regime-dependent: it may range from a strictly non-ergodic state where this phenomenon has an increasing trend, up to a stable regime where inequality is steady and the system efficiently mimics ergodicity. Mobility measures, conversely, are always stable over time, but suggest that economies become less mobile in non-ergodic regimes. By fitting the model to empirical data for the income share of the top earners in the USA, we provide evidence that the income dynamics in this country is consistently in a regime in which non-ergodicity characterizes inequality and immobility. Our results can serve as a simple rationale for the observed real-world income dynamics and as such aid in addressing non-ergodicity in various empirical settings across the globe.This article is part of the theme issue 'Kinetic exchange models of societies and economies'.}, language = {en} } @article{BarraHovhannisyanImparato2022, author = {Barra, Felipe and Hovhannisyan, Karen V. and Imparato, Alberto}, title = {Quantum batteries at the verge of a phase transition}, series = {New journal of physics : the open-access journal for physics}, volume = {24}, journal = {New journal of physics : the open-access journal for physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/ac43ed}, pages = {17}, year = {2022}, abstract = {Starting from the observation that the reduced state of a system strongly coupled to a bath is, in general, an athermal state, we introduce and study a cyclic battery-charger quantum device that is in thermal equilibrium, or in a ground state, during the charge storing stage. The cycle has four stages: the equilibrium storage stage is interrupted by disconnecting the battery from the charger, then work is extracted from the battery, and then the battery is reconnected with the charger; finally, the system is brought back to equilibrium. At no point during the cycle are the battery-charger correlations artificially erased. We study the case where the battery and charger together comprise a spin-1/2 Ising chain, and show that the main characteristics-the extracted energy and the thermodynamic efficiency-can be enhanced by operating the cycle close to the quantum phase transition point. When the battery is just a single spin, we find that the output work and efficiency show a scaling behavior at criticality and derive the corresponding critical exponents. Due to always present correlations between the battery and the charger, operations that are equivalent from the perspective of the battery can entail different energetic costs for switching the battery-charger coupling. This happens only when the coupling term does not commute with the battery's bare Hamiltonian, and we use this purely quantum leverage to further optimize the performance of the device.}, language = {en} } @article{MatternReppertZeuschneretal.2023, author = {Mattern, Maximilian and Reppert, Alexander von and Zeuschner, Steffen Peer and Herzog, Marc and Pudell, Jan-Etienne and Bargheer, Matias}, title = {Concepts and use cases for picosecond ultrasonics with x-rays}, series = {Photoacoustics}, volume = {31}, journal = {Photoacoustics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-5979}, doi = {10.1016/j.pacs.2023.100503}, pages = {22}, year = {2023}, abstract = {This review discusses picosecond ultrasonics experiments using ultrashort hard x-ray probe pulses to extract the transient strain response of laser-excited nanoscopic structures from Bragg-peak shifts. This method provides direct, layer-specific, and quantitative information on the picosecond strain response for structures down to few-nm thickness. We model the transient strain using the elastic wave equation and express the driving stress using Gruneisen parameters stating that the laser-induced stress is proportional to energy density changes in the microscopic subsystems of the solid, i.e., electrons, phonons and spins. The laser-driven strain response can thus serve as an ultrafast proxy for local energy-density and temperature changes, but we emphasize the importance of the nanoscale morphology for an accurate interpretation due to the Poisson effect. The presented experimental use cases encompass ultrathin and opaque metal-heterostructures, continuous and granular nanolayers as well as negative thermal expansion materials, that each pose a challenge to established all-optical techniques.}, language = {en} } @misc{ZeuschnerParpiievPezeriletal.2019, author = {Zeuschner, Steffen Peer and Parpiiev, Tymur and Pezeril, Thomas and Hillion, Arnaud and Dumesnil, Karine and Anane, Abdelmadjid and Pudell, Jan-Etienne and Willig, Lisa and R{\"o}ssle, Matthias and Herzog, Marc and Reppert, Alexander von and Bargheer, Matias}, title = {Tracking picosecond strain pulses in heterostructures that exhibit giant magnetostriction}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-naturwissenschaftliche Reihe}, number = {706}, issn = {1866-8372}, doi = {10.25932/publishup-42845}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428457}, pages = {9}, year = {2019}, abstract = {We combine ultrafast X-ray diffraction (UXRD) and time-resolved Magneto-Optical Kerr Effect (MOKE) measurements to monitor the strain pulses in laser-excited TbFe2/Nb heterostructures. Spatial separation of the Nb detection layer from the laser excitation region allows for a background-free characterization of the laser-generated strain pulses. We clearly observe symmetric bipolar strain pulses if the excited TbFe2 surface terminates the sample and a decomposition of the strain wavepacket into an asymmetric bipolar and a unipolar pulse, if a SiO2 glass capping layer covers the excited TbFe2 layer. The inverse magnetostriction of the temporally separated unipolar strain pulses in this sample leads to a MOKE signal that linearly depends on the strain pulse amplitude measured through UXRD. Linear chain model simulations accurately predict the timing and shape of UXRD and MOKE signals that are caused by the strain reflections from multiple interfaces in the heterostructure.}, language = {en} } @article{SchaffenrothPelisoliBarlowetal.2022, author = {Schaffenroth, Veronika and Pelisoli, Ingrid and Barlow, Brad N. and Geier, Stephan and Kupfer, Thomas}, title = {Hot subdwarfs in close binaries observed from space I.}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {666}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202244214}, pages = {19}, year = {2022}, abstract = {Context: About a third of the hot subdwarfs of spectral type B (sdBs), which are mostly core-helium-burning objects on the extreme horizontal branch, are found in close binaries with cool, low-mass stellar, substellar, or white dwarf companions. They can show light variations due to di fferent phenomena. Aims: Many hot subdwarfs now have space-based light curves with a high signal-to-noise ratio available. We used light curves from the Transiting Exoplanet Survey Satellite and the K2 space mission to look for more sdB binaries. Their light curves can be used to study the hot subdwarf primaries and their companions, and obtained orbital, atmospheric, and absolute parameters for those systems, when combined with other analysis methods. Methods: By classifying the light variations and combining these with the fit of the spectral energy distribution, the distance derived by the parallaxes obtained by Gaia, and the atmospheric parameters, mainly from the literature, we could derive the nature of the primaries and secondaries in 122 (75\%) of the known sdB binaries and 82 newly found reflection e ffect systems. We derived absolute masses, radii, and luminosities for a total of 39 hot subdwarfs with cool, low-mass companions, as well 29 known and newly found sdBs with white dwarf companions. Results: The mass distribution of hot subdwarfs with cool, low-mass stellar and substellar companions, di ffers from those with white dwarf companions, implying they come from di fferent populations. By comparing the period and minimum companion mass distributions, we find that the reflection e ffect systems all have M dwarf or brown dwarf companions, and that there seem to be several di fferent populations of hot subdwarfs with white dwarf binaries - one with white dwarf minimum masses around 0.4 M-circle dot, one with longer periods and minimum companion masses up to 0.6 M-circle dot, and at the shortest period, another with white dwarf minimum masses around 0.8 M-circle dot. We also derive the first orbital period distribution for hot subdwarfs with cool, low-mass stellar or substellar systems selected from light variations instead of radial velocity variations. It shows a narrower period distribution, from 1.5 h to 35 h, compared to the distribution of hot subdwarfs with white dwarfs, which ranges from 1 h to 30 days. These period distributions can be used to constrain the previous common-envelope phase.}, language = {en} } @article{UmlandtKopyshevPasechniketal.2022, author = {Umlandt, Maren and Kopyshev, Alexey and Pasechnik, Sergey and Zakharov, Alexandre and Lomadze, Nino and Santer, Svetlana}, title = {Light-triggered manipulations of droplets all in one: reversible wetting, transport, splitting, and merging}, series = {ACS applied materials \& interfaces}, volume = {14}, journal = {ACS applied materials \& interfaces}, number = {36}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.2c10710}, pages = {41412 -- 41420}, year = {2022}, abstract = {Here, we establish different ways of light-triggered droplet manipulation such as reversible wetting, splitting, merging, and transport. The unique features of our approach are that the changes in the wetting properties of microscopic droplets of isotropic (oil) or anisotropic (liquid crystalline) liquids adsorbed on photoswitchable films can be triggered just by application of soft optical stimuli, which lead to dynamical, reversible changes in the local morphology of the structured surfaces. The adaptive films consist of an azobenzene-containing surfactant ionically attached to oppositely charged polymer chains. Under exposure to irradiation with light, the azobenzene photoisomerizes between two states, nonpolar trans -isomer and polar cis-isomer, resulting in the corresponding changes in the surface energy and orientation of the surfactant tails at the interface. Additionally, the local increase in the surface temperature due to absorption of light by the azobenzene groups enables diverse processes of manipulation of the adsorbed small droplets, such as the reversible increase of the droplet basal area up to 5 times, anisotropic wetting during irradiation with modulated light, and precise partition of the droplet into many small pieces, which can then be merged on demand to the desired number of larger droplets. Moreover, using a moving focused light spot, we experimentally demonstrate and theoretically explain the locomotion of the droplet over macroscopic distances with a velocity of up to 150 mu m center dot s-1. Our findings could lead to the ultimate application of a programmable workbench for manipulating and operating an ensemble of droplets, just using simple and gentle optical stimuli.}, language = {en} }