@article{KnoxBrownRindfleischGuentheretal.2020, author = {Knox-Brown, Patrick and Rindfleisch, Tobias and G{\"u}nther, Anne and Balow, Kim and Bremer, Anne and Walther, Dirk and Miettinen, Markus S. and Hincha, Dirk K. and Thalhammer, Anja}, title = {Similar Yet Different}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {8}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms21082794}, pages = {25}, year = {2020}, abstract = {The importance of intrinsically disordered late embryogenesis abundant (LEA) proteins in the tolerance to abiotic stresses involving cellular dehydration is undisputed. While structural transitions of LEA proteins in response to changes in water availability are commonly observed and several molecular functions have been suggested, a systematic, comprehensive and comparative study of possible underlying sequence-structure-function relationships is still lacking. We performed molecular dynamics (MD) simulations as well as spectroscopic and light scattering experiments to characterize six members of two distinct, lowly homologous clades of LEA_4 family proteins from Arabidopsis thaliana. We compared structural and functional characteristics to elucidate to what degree structure and function are encoded in LEA protein sequences and complemented these findings with physicochemical properties identified in a systematic bioinformatics study of the entire Arabidopsis thaliana LEA_4 family. Our results demonstrate that although the six experimentally characterized LEA_4 proteins have similar structural and functional characteristics, differences concerning their folding propensity and membrane stabilization capacity during a freeze/thaw cycle are obvious. These differences cannot be easily attributed to sequence conservation, simple physicochemical characteristics or the abundance of sequence motifs. Moreover, the folding propensity does not appear to be correlated with membrane stabilization capacity. Therefore, the refinement of LEA_4 structural and functional properties is likely encoded in specific patterns of their physicochemical characteristics.}, language = {en} } @article{MaaresKeilKozaetal.2018, author = {Maares, Maria and Keil, Claudia and Koza, Jenny and Straubing, Sophia and Schwerdtle, Tanja and Haase, Hajo}, title = {In Vitro Studies on Zinc Binding and Buffering by Intestinal Mucins}, series = {International Journal of Molecular Sciences}, volume = {19}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms19092662}, pages = {20}, year = {2018}, abstract = {The investigation of luminal factors influencing zinc availability and accessibility in the intestine is of great interest when analyzing parameters regulating intestinal zinc resorption. Of note, intestinal mucins were suggested to play a beneficial role in the luminal availability of zinc. Their exact zinc binding properties, however, remain unknown and the impact of these glycoproteins on human intestinal zinc resorption has not been investigated in detail. Thus, the aim of this study is to elucidate the impact of intestinal mucins on luminal uptake of zinc into enterocytes and its transfer into the blood. In the present study, in vitro zinc binding properties of mucins were analyzed using commercially available porcine mucins and secreted mucins of the goblet cell line HT-29-MTX. The molecular zinc binding capacity and average zinc binding affinity of these glycoproteins demonstrates that mucins contain multiple zinc-binding sites with biologically relevant affinity within one mucin molecule. Zinc uptake into the enterocyte cell line Caco-2 was impaired by zinc-depleted mucins. Yet this does not represent their form in the intestinal lumen in vivo under zinc adequate conditions. In fact, zinc-uptake studies into enterocytes in the presence of mucins with differing degree of zinc saturation revealed zinc buffering by these glycoproteins, indicating that mucin-bound zinc is still available for the cells. Finally, the impact of mucins on zinc resorption using three-dimensional cultures was studied comparing the zinc transfer of a Caco-2/HT-29-MTX co-culture and conventional Caco-2 monoculture. Here, the mucin secreting co-cultures yielded higher fractional zinc resorption and elevated zinc transport rates, suggesting that intestinal mucins facilitate the zinc uptake into enterocytes and act as a zinc delivery system for the intestinal epithelium.}, language = {en} } @article{KathBoitGuilletal.2018, author = {Kath, Nadja J. and Boit, Alice and Guill, Christian and Gaedke, Ursula}, title = {Accounting for activity respiration results in realistic trophic transfer efficiencies in allometric trophic network (ATN) models}, series = {Theoretical ecology}, volume = {11}, journal = {Theoretical ecology}, number = {4}, publisher = {Springer}, address = {Heidelberg}, issn = {1874-1738}, doi = {10.1007/s12080-018-0378-z}, pages = {453 -- 463}, year = {2018}, abstract = {Allometric trophic network (ATN) models offer high flexibility and scalability while minimizing the number of parameters and have been successfully applied to investigate complex food web dynamics and their influence on food web diversity and stability. However, the realism of ATN model energetics has never been assessed in detail, despite their critical influence on dynamic biomass and production patterns. Here, we compare the energetics of the currently established original ATN model, considering only biomass-dependent basal respiration, to an extended ATN model version, considering both basal and assimilation-dependent activity respiration. The latter is crucial in particular for unicellular and invertebrate organisms which dominate the metabolism of pelagic and soil food webs. Based on metabolic scaling laws, we show that the extended ATN version reflects the energy transfer through a chain of four trophic levels of unicellular and invertebrate organisms more realistically than the original ATN version. Depending on the strength of top-down control, the original ATN model yields trophic transfer efficiencies up to 71\% at either the third or the fourth trophic level, which considerably exceeds any realistic values. In contrast, the extended ATN version yields realistic trophic transfer efficiencies 30\% at all trophic levels, in accordance with both physiological considerations and empirical evidence from pelagic systems. Our results imply that accounting for activity respiration is essential for consistently implementing the metabolic theory of ecology in ATN models and for improving their quantitative predictions, which makes them more powerful tools for investigating the dynamics of complex natural communities.}, language = {en} } @article{TraxlerHanssenLautenbacheretal.2018, author = {Traxler, Juliane and Hanssen, Marjolein M. and Lautenbacher, Stefan and Ottawa, Fabian and Peters, Madelon L.}, title = {General versus pain-specific cognitions}, series = {European journal of pain}, volume = {23}, journal = {European journal of pain}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1090-3801}, doi = {10.1002/ejp.1294}, pages = {150 -- 159}, year = {2018}, abstract = {Background Previous studies found evidence that dispositional optimism is related to lower pain sensitivity. Recent findings suggest that temporarily increasing optimism by means of imagining a positive future may also have pain-alleviating effects. Objectives The present experiment was designed to investigate conditioned pain modulation (CPM) as a potential underlying mechanism of this pain-alleviating effect of induced optimism. Methods For this purpose, 45 healthy participants were randomized into an optimistic or neutral imagery condition. Additionally, participants completed questionnaires on dispositional optimism, pain catastrophizing and pain expectations. CPM was assessed by delivering a series of five heat pain stimuli on the nondominant hand before and during immersion of the dominant hand in water of 5 degrees C for 70 s. Results A clear CPM effect was found, that is heat pain reports were lower during simultaneous cold water stimulation. Although the optimism manipulation successfully increased optimism, it did not affect pain ratings or CPM. Post hoc analyses indicated that dispositional optimism was not associated with the magnitude of CPM, but pain catastrophizing and pain expectations did significantly correlate with the CPM effect. Conclusion Pain-specific but not general cognitions appear to influence endogenous pain modulation. Significance Conditioned pain modulation is not the underlying mechanism of the pain-alleviating effects of induced optimism. However, pain-specific cognitions including pain catastrophizing and pain expectations affect endogenous pain modulation which should be taken into account in treatment and CPM research.}, language = {en} } @article{JiaFriebeSchubertetal.2019, author = {Jia, He and Friebe, Christian and Schubert, Ulrich S. and Zhang, Xiaozhe and Quan, Ting and Lu, Yan and Gohy, Jean-Francois}, title = {Core-Shell Nanoparticles with a Redox Polymer Core and a Silica Porous Shell as High-Performance Cathode Material for Lithium-Ion Batteries}, series = {Energy technology : generation, conversion, storage, distribution}, volume = {8}, journal = {Energy technology : generation, conversion, storage, distribution}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2194-4288}, doi = {10.1002/ente.201901040}, pages = {8}, year = {2019}, abstract = {A facile and novel method for the fabrication of core-shell nanoparticles (PTMA@SiO2) based on a poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) core and a porous SiO2 shell is reported. The core-shell nanoparticles are further self-assembled with negatively charged multi-walled carbon nanotubes (MWCNTs), which results in the formation of a free-standing cathode electrode. The porous SiO2 shell not only effectively improves the stability of the linear PTMA redox polymer with low molar mass in organic electrolytes but also leads to the uniform dispersion of PTMA active units in the MWCNTs conductive network. The PTMA@SiO2@MWCNT composite electrode exhibits a specific capacity as high as 73.8 mAh g at 1 C and only 0.11\% capacity loss per cycle at a rate of 2 C.}, language = {en} } @misc{Kleuser2018, author = {Kleuser, Burkhard}, title = {The enigma of sphingolipids in health and disease}, series = {International journal of molecular sciences}, volume = {19}, journal = {International journal of molecular sciences}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms19103126}, pages = {3}, year = {2018}, language = {en} } @article{WolffFrischmannSchulzeetal.2018, author = {Wolff, Christian Michael and Frischmann, Peter D. and Schulze, Marcus and Bohn, Bernhard J. and Wein, Robin and Livadas, Panajotis and Carlson, Michael T. and J{\"a}ckel, Frank and Feldmann, Jochen and W{\"u}rthner, Frank and Stolarczyk, Jacek K.}, title = {All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods}, series = {Nature Energy}, volume = {3}, journal = {Nature Energy}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {2058-7546}, doi = {10.1038/s41560-018-0229-6}, pages = {862 -- 869}, year = {2018}, abstract = {Full water splitting into hydrogen and oxygen on semiconductor nanocrystals is a challenging task; overpotentials must be overcome for both half-reactions and different catalytic sites are needed to facilitate them. Additionally, efficient charge separation and prevention of back reactions are necessary. Here, we report simultaneous H-2 and O-2 evolution by CdS nanorods decorated with nanoparticulate reduction and molecular oxidation co-catalysts. The process proceeds entirely without sacrificial agents and relies on the nanorod morphology of CdS to spatially separate the reduction and oxidation sites. Hydrogen is generated on Pt nanoparticles grown at the nanorod tips, while Ru(tpy)(bpy)Cl-2-based oxidation catalysts are anchored through dithiocarbamate bonds onto the sides of the nanorod. O-2 generation from water was verified by O-18 isotope labelling experiments, and time-resolved spectroscopic results confirmed efficient charge separation and ultrafast electron and hole transfer to the reaction sites. The system demonstrates that combining nanoparticulate and molecular catalysts on anisotropic nanocrystals provides an effective pathway for visible-light-driven photocatalytic water splitting.}, language = {en} } @article{CherstvyNagelBetaetal.2018, author = {Cherstvy, Andrey G. and Nagel, Oliver and Beta, Carsten and Metzler, Ralf}, title = {Non-Gaussianity, population heterogeneity, and transient superdiffusion in the spreading dynamics of amoeboid cells}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {20}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {35}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c8cp04254c}, pages = {23034 -- 23054}, year = {2018}, abstract = {What is the underlying diffusion process governing the spreading dynamics and search strategies employed by amoeboid cells? Based on the statistical analysis of experimental single-cell tracking data of the two-dimensional motion of the Dictyostelium discoideum amoeboid cells, we quantify their diffusive behaviour based on a number of standard and complementary statistical indicators. We compute the ensemble- and time-averaged mean-squared displacements (MSDs) of the diffusing amoebae cells and observe a pronounced spread of short-time diffusion coefficients and anomalous MSD-scaling exponents for individual cells. The distribution functions of the cell displacements, the long-tailed distribution of instantaneous speeds, and the velocity autocorrelations are also computed. In particular, we observe a systematic superdiffusive short-time behaviour for the ensemble- and time-averaged MSDs of the amoeboid cells. Also, a clear anti-correlation of scaling exponents and generalised diffusivity values for different cells is detected. Most significantly, we demonstrate that the distribution function of the cell displacements has a strongly non-Gaussian shape andusing a rescaled spatio-temporal variablethe cell-displacement data collapse onto a universal master curve. The current analysis of single-cell motions can be implemented for quantifying diffusive behaviours in other living-matter systems, in particular, when effects of active transport, non-Gaussian displacements, and heterogeneity of the population are involved in the dynamics.}, language = {en} } @article{BrueggerGobetSigletal.2018, author = {Br{\"u}gger, Sandra Olivia and Gobet, Erika and Sigl, Michael and Osmont, Dimitri and Papina, Tatyana and Rudaya, Natalia and Schwikowski-Gigar, Margit and Tinner, Willy}, title = {Ice records provide new insights into climatic vulnerability of Central Asian forest and steppe communities}, series = {Global and planetary change}, volume = {169}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2018.07.010}, pages = {188 -- 201}, year = {2018}, abstract = {Forest and steppe communities in the Altai region of Central Asia are threatened by changing climate and anthropogenic pressure. Specifically, increasing drought and grazing pressure may cause collapses of moisture-demanding plant communities, particularly forests. Knowledge about past vegetation and fire responses to climate and land use changes may help anticipating future ecosystem risks, given that it has the potential to disclose mechanisms and processes that govern ecosystem vulnerability. We present a unique paleoecological record from the high-alpine Tsambagarav glacier in the Mongolian Altai that provides novel large-scale information on vegetation, fire and pollution with an exceptional temporal resolution and precision. Our palynological record identifies several late-Holocene boreal forest expansions, contractions and subsequent recoveries. Maximum forest expansions occurred at 3000-2800 BC, 2400-2100 BC, and 1900-1800 BC. After 1800 BC mixed boreal forest communities irrecoverably declined. Fires reached a maximum at 1600 BC, 200 years after the final forest collapse. Our multiproxy data suggest that burning peaked in response to dead biomass accumulation resulting from forest diebacks. Vegetation and fire regimes partly decoupled from climate after 1700 AD, when atmospheric industrial pollution began, and land use intensified. We conclude that moisture availability was more important than temperature for past vegetation dynamics, in particular for forest loss and steppe expansion. The past Mongolian Altai evidence implies that in the future forests of the Russian Altai may collapse in response to reduced moisture availability.}, language = {en} } @article{FudickarLinker2018, author = {Fudickar, Werner and Linker, Torsten}, title = {Release of Singlet Oxygen from Aromatic Endoperoxides by Chemical Triggers}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {57}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {39}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201806881}, pages = {12971 -- 12975}, year = {2018}, abstract = {The generation of reactive singlet oxygen under mild conditions is of current interest in chemistry, biology, and medicine. We were able to release oxygen from dipyridylanthracene endoperoxides (EPOs) by using a simple chemical trigger at low temperature. Protonation and methylation of such EPOs strongly accelerated these reactions. Furthermore, the methyl pyridinium derivatives are water soluble and therefore serve as oxygen carriers in aqueous media. Methylation of the EPO of the ortho isomer affords the parent form directly without increasing the temperature under very mild conditions. This exceptional behavior is ascribed to the close contact between the nitrogen atom and the peroxo group. Singlet oxygen is released upon this reaction, and can be used to oxygenate an acceptor such as tetramethylethylene in the dark with no heating. Thus, a new chemical source of singlet oxygen has been found, which is triggered by a simple stimulus.}, language = {en} } @article{KocSimovichSchoenemannetal.2019, author = {Koc, Julian and Simovich, Tomer and Sch{\"o}nemann, Eric and Chilkoti, Ashutosh and Gardner, Harrison and Swain, Geoffrey W. and Hunsucker, Kelli and Laschewsky, Andr{\´e} and Rosenhahn, Axel}, title = {Sediment challenge to promising ultra-low fouling hydrophilic surfaces in the marine environment}, series = {Biofouling : the journal of bioadhesion and biofilm research}, volume = {35}, journal = {Biofouling : the journal of bioadhesion and biofilm research}, number = {4}, publisher = {Taylor \& Francis}, address = {London}, issn = {0892-7014}, doi = {10.1080/08927014.2019.1611790}, pages = {454 -- 462}, year = {2019}, abstract = {Hydrophilic coatings exhibit ultra-low fouling properties in numerous laboratory experiments. In stark contrast, the antifouling effect of such coatings in vitro failed when performing field tests in the marine environment. The fouling release performance of nonionic and zwitterionic hydrophilic polymers was substantially reduced compared to the controlled laboratory environment. Microscopy and spectroscopy revealed that a large proportion of the accumulated material in field tests contains inorganic compounds and diatomaceous soil. Diatoms adhered to the accumulated material on the coating, but not to the pristine polymer. Simulating field tests in the laboratory using sediment samples collected from the test sites showed that incorporated sand and diatomaceous earth impairs the fouling release characteristics of the coatings. When exposed to marine sediment from multiple locations, particulate matter accumulated on these coatings and served as attachment points for diatom adhesion and enhanced fouling. Future developments of hydrophilic coatings should consider accumulated sediment and its potential impact on the antifouling performance.}, language = {en} } @article{SchuckLehmannOllivieretal.2019, author = {Schuck, G{\"o}tz and Lehmann, Frederike and Ollivier, Jacques and Mutka, Hannu and Schorr, Susan}, title = {Influence of chloride substitution on the rotational dynamics of methylammonium in MAPbI(3-x)Cl(x) perovskites}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {123}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {18}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.9b01238}, pages = {11436 -- 11446}, year = {2019}, abstract = {Hybrid halide perovskites, MAPbI(3), MAPbI(2.94)Cl(0.0)6, and MAPbCl(3) (MA, methylammonium), were investigated using inelastic and quasielastic neutron scattering (QENS) with the aim of elucidating the impact of chloride substitution on the rotational dynamics of MA. In this context, we discuss the influence of the inelastic neutron scattering caused by low-energy phonons on QENS, resulting from the MA rotational dynamics in MAPbI(3-x)Cl(x). Through a comparative temperature-dependent QENS investigation with different energy resolutions, which allow a wide Fourier time window, we achieved a consistent description of the influence of chlorine substitution in MAPbI(3) on the MA dynamics. Our results showed that chlorine substitution in the low-temperature orthorhombic phase leads to a weakening of the hydrogen bridge bonds, since the characteristic relaxation times of C-3 rotation at 70 K in MAPbCl(3) (135 ps) and MAPbI(2.94)Cl(0.06) (485 ps) are much shorter than that in MAPbI(3) (1635 ps). For the orthorhombic phase, we obtained the activitin energies from the temperature-dependent characteristic relaxation times tau (c3). by Arrhenius fits, indicating lower values of E-a for MAPbCl(3) and MAPbI(2.94)Cl(0.06) compared to that of MAPbI(3). We also performed QENS analyses at 190 K for all three samples. Here, we observed that MAPbCI(3) shows slower MA rotational dynamics than MAPbI(3) in the disordered structure.}, language = {en} } @article{YuQuanMeietal.2019, author = {Yu, Hongtao and Quan, Ting and Mei, Shilin and Kochovski, Zdravko and Huang, Wei and Meng, Hong and Lu, Yan}, title = {Prompt Electrodeposition of Ni Nanodots on Ni Foam to Construct a High-Performance Water-Splitting Electrode}, series = {Nano-Micro Letters}, volume = {11}, journal = {Nano-Micro Letters}, number = {41}, publisher = {Shanghai JIAO TONG univ press}, address = {Shanghai}, issn = {2311-6706}, doi = {10.1007/s40820-019-0269-x}, pages = {13}, year = {2019}, abstract = {HighlightsFacile electrodeposition for fabricating active Ni nanodots (NiNDs) on Ni foam (NF) is shown.Binder- and heteroatom-free recyclable NiO/NiNDs@NF electrodes are efficiently made.NiO/NiNDs@NF bifunctional catalytic electrodes are used for water splitting. AbstractIn past decades, Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts for water splitting. With increasing demands for Ni worldwide, simplifying the fabrication process, increasing Ni recycling, and reducing waste are tangible sustainability goals. Here, binder-free, heteroatom-free, and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method. Typically, active Ni nanodot (NiND) clusters are electrodeposited on Ni foam (NF) in Ni(NO3)(2) acetonitrile solution. After drying in air, NiO/NiND composites are obtained, leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode. The electrode shows high efficiency and long-term stability for catalyzing hydrogen and oxygen evolution reactions at low overpotentials ((10)(HER)=119mV and (50)(OER)=360mV) and can promote water catalysis at 1.70V@10mAcm(-2). More importantly, the recovery of raw materials (NF and Ni(NO3)(2)) is quite easy because of the solubility of NiO/NiNDs composites in acid solution for recycling the electrodes. Additionally, a large-sized (S similar to 70cm(2)) NiO/NiNDs@NF catalytic electrode with high durability has also been constructed. This method provides a simple and fast technology to construct high-performance, low-cost, and environmentally friendly Ni-based bifunctional electrocatalytic electrodes for water splitting.}, language = {en} } @article{UtechtGaebelKlamroth2018, author = {Utecht, Manuel Martin and Gaebel, Tina and Klamroth, Tillmann}, title = {Desorption induced by low energy charge carriers on Si(111)-7 x 7}, series = {Journal of computational chemistry : organic, inorganic, physical, biological}, volume = {39}, journal = {Journal of computational chemistry : organic, inorganic, physical, biological}, number = {30}, publisher = {Wiley}, address = {Hoboken}, issn = {0192-8651}, doi = {10.1002/jcc.25607}, pages = {2517 -- 2525}, year = {2018}, abstract = {We use clusters for the modeling of local ion resonances caused by low energy charge carriers in STM-induced desorption of benzene derivates from Si(111)-7 x 7. We perform Born-Oppenheimer molecular dynamics for the charged systems assuming vertical transitions to the charged states at zero temperature, to rationalize the low temperature activation energies, which are found in experiment for chlorobenzene. Our calculations suggest very similar low temperature activation energies for toluene and benzene. For the cationic resonance transitions to physisorption are found even at 0 K, while the anion remains chemisorbed during the propagations. Further, we also extend our previous static quantum chemical investigations to toluene and benzene. In addition, an in depth analysis of the ionization potentials and electron affinities, which are used to estimate resonance energies, is given.}, language = {en} } @article{WernoWilhelmiKuropkaetal.2018, author = {Werno, Martin Witold and Wilhelmi, Ilka and Kuropka, Benno and Ebert, Franziska and Freund, Christian and Sch{\"u}rmann, Annette}, title = {The GTPase ARFRP1 affects lipid droplet protein composition and triglyceride release from intracellular storage of intestinal Caco-2 cells}, series = {Biochemical and biophysical research communications}, volume = {506}, journal = {Biochemical and biophysical research communications}, number = {1}, publisher = {Elsevier}, address = {San Diego}, issn = {0006-291X}, doi = {10.1016/j.bbrc.2018.10.092}, pages = {259 -- 265}, year = {2018}, abstract = {Intestinal release of dietary triglycerides via chylomicrons is the major contributor to elevated postprandial triglyceride levels. Dietary lipids can be transiently stored in cytosolic lipid droplets (LDs) located in intestinal enterocytes for later release. ADP ribosylation factor-related protein 1 (ARFRP1) participates in processes of LD growth in adipocytes and in lipidation of lipoproteins in liver and intestine. This study aims to explore the impact of ARFRP1 on LD organization and its interplay with chylomicron-mediated triglyceride release in intestinal-like Caco-2 cells. Suppression of Arfrp1 reduced release of intracellularly derived triglycerides (0.69-fold) and increased the abundance of transitional endoplasmic reticulum ATPase TERA/VCP, fatty acid synthase-associated factor 2 (FAF2) and perilipin 2 (Plin2) at the LD surface. Furthermore, TERA/VCP and FAF2 co-occurred more frequently with ATGL at LDs, suggesting a reduced adipocyte triglyceride lipase (ATGL)-mediated lipolysis. Accordingly, inhibition of lipolysis reduced lipid release from intracellular storage pools by the same magnitude as Arfrp1 depletion. Thus, the lack of Arfrp1 increases the abundance of lipolysis-modulating enzymes TERA/VCP, FAF2 and Plin2 at LDs, which might decrease lipolysis and reduce availability of fatty acids for triglyceride synthesis and their release via chylomicrons. (C) 2018 The Authors. Published by Elsevier Inc.}, language = {en} } @article{DuyduBasaranAydinetal.2018, author = {Duydu, Yalcin and Basaran, Nursen and Aydin, Sevtap and Ustundag, Aylin and Yalcin, Can {\"O}zg{\"u}r and Anlar, Hatice Gul and Bacanli, Merve and Aydos, Kaan and Atabekoglu, Cem Somer and Golka, Klaus and Ickstadt, Katja and Schwerdtle, Tanja and Werner, Matthias and Meyer, S{\"o}ren and Bolt, Hermann M.}, title = {Evaluation of FSH, LH, testosterone levels and semen parameters in male boron workers under extreme exposure conditions}, series = {Archives of toxicology : official journal of EUROTOX}, volume = {92}, journal = {Archives of toxicology : official journal of EUROTOX}, number = {10}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-5761}, doi = {10.1007/s00204-018-2296-7}, pages = {3051 -- 3059}, year = {2018}, abstract = {Boric acid and sodium borates are currently classified in the EU-CLP regulation as "toxic to reproduction" under "Category 1B", with hazard statement of H360FD. However, so far field studies on male reproduction in China and in Turkey could not confirm such boron-associated toxic effects. As validation by another independent study is still required, the present study has investigated possible boron-associated effects on male reproduction in workers (n = 212) under different boron exposure conditions. The mean daily boron exposure (DBE) and blood boron concentration of workers in the extreme exposure group (n = 98) were 47.17 +/- 17.47 (7.95-106.8) mg B/day and 570.6 +/- 160.1 (402.6-1100) ng B/g blood, respectively. Nevertheless, boron-associated adverse effects on semen parameters, as well as on FSH, LH and total testosterone levels were not seen, even within the extreme exposure group. With this study, a total body of evidence has accumulated that allows to conclude that male reproductive effects are not relevant to humans, under any feasible and realistic conditions of exposure to inorganic boron compounds.}, language = {en} } @article{Goychuk2018, author = {Goychuk, Igor}, title = {Viscoelastic subdiffusion in a random Gaussian environment}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {20}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {37}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c8cp05238g}, pages = {24140 -- 24155}, year = {2018}, abstract = {Viscoelastic subdiffusion governed by a fractional Langevin equation is studied numerically in a random Gaussian environment modeled by stationary Gaussian potentials with decaying spatial correlations. This anomalous diffusion is archetypal for living cells, where cytoplasm is known to be viscoelastic and a spatial disorder also naturally emerges. We obtain some first important insights into it within a model one-dimensional study. Two basic types of potential correlations are studied: short-range exponentially decaying and algebraically slow decaying with an infinite correlation length, both for a moderate (several kBT, in the units of thermal energy), and strong (5-10kBT) disorder. For a moderate disorder, it is shown that on the ensemble level viscoelastic subdiffusion can easily overcome the medium's disorder. Asymptotically, it is not distinguishable from the disorder-free subdiffusion. However, a strong scatter in single-trajectory averages is nevertheless seen even for a moderate disorder. It features a weak ergodicity breaking, which occurs on a very long yet transient time scale. Furthermore, for a strong disorder, a very long transient regime of logarithmic, Sinai-type diffusion emerges. It can last longer and be faster in the absolute terms for weakly decaying correlations as compared with the short-range correlations. Residence time distributions in a finite spatial domain are of a generalized log-normal type and are reminiscent also of a stretched exponential distribution. They can be easily confused for power-law distributions in view of the observed weak ergodicity breaking. This suggests a revision of some experimental data and their interpretation.}, language = {en} } @article{YalcinkayaBresselLindneretal.2018, author = {Yalcinkaya, Hacer and Bressel, Katharina and Lindner, Peter and Gradzielski, Michael}, title = {Controlled formation of vesicles with added styrene and their fixation by polymerization}, series = {Journal of colloid and interface science}, volume = {531}, journal = {Journal of colloid and interface science}, publisher = {Elsevier}, address = {San Diego}, issn = {0021-9797}, doi = {10.1016/j.jcis.2018.07.097}, pages = {672 -- 680}, year = {2018}, abstract = {Hypothesis: An effective way for fixating vesicle structures is the insertion of monomers and cross-linking agents into their bilayer, and their subsequent polymerization can lead to the formation of polymeric nanocapsules. Particularly attractive here are vesicle systems that form spontaneously well-defined small vesicles, as obtaining such small nanocapsules with sizes below 100 nm is still challenging. Experiments: A spontaneously forming well-defined vesicle system composed of the surfactants TDMAO (tetradecyldimethylamine oxide), Pluronic L35, and LiPFOS (lithium perfluorooctylsulfonate) mixture was used as template for fixation by polymerization. Therefore, styrene monomer was incorporated into the vesicle bilayer and ultimately these structures were fixated by UV induced radical polymerization. Structural alteration of the vesicles upon loading with monomer and the cross-linker as well as the effect of subsequent polymerization in the membrane were investigated in detail by turbidity measurements, dynamic and static light scattering, (DLS, SLS), and small angle neutron scattering (SANS). Findings: The analysis showed the changes on vesicle structures due to the monomer loading, and that these structures can become permanently fixed by the polymerization process. The potential of this approach to produce well-defined nanocapsules starting from a self-assembled system and following polymerization is critically evaluated. (C) 2018 Elsevier Inc. All rights reserved.}, language = {en} } @article{Koetz2020, author = {Koetz, Joachim}, title = {The Effect of Surface Modification of Gold Nanotriangles for Surface-Enhanced Raman Scattering Performance}, series = {Nanomaterials}, volume = {10}, journal = {Nanomaterials}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano10112187}, pages = {13}, year = {2020}, abstract = {A surface modification of ultraflat gold nanotriangles (AuNTs) with different shaped nanoparticles is of special relevance for surface-enhanced Raman scattering (SERS) and the photo-catalytic activity of plasmonic substrates. Therefore, different approaches are used to verify the flat platelet morphology of the AuNTs by oriented overgrowth with metal nanoparticles. The most important part for the morphological transformation of the AuNTs is the coating layer, containing surfactants or polymers. By using well established AuNTs stabilized by a dioctyl sodium sulfosuccinate (AOT) bilayer, different strategies of surface modification with noble metal nanoparticles are possible. On the one hand undulated superstructures were synthesized by in situ growth of hemispherical gold nanoparticles in the polyethyleneimine (PEI)-coated AOT bilayer of the AuNTs. On the other hand spiked AuNTs were obtained by a direct reduction of Au³⁺ ions in the AOT double layer in presence of silver ions and ascorbic acid as reducing agent. Additionally, crumble topping of the smooth AuNTs can be realized after an exchange of the AOT bilayer by hyaluronic acid, followed by a silver-ion mediated reduction with ascorbic acid. Furthermore, a decoration with silver nanoparticles after coating the AOT bilayer with the cationic surfactant benzylhexadecyldimethylammonium chloride (BDAC) can be realized. In that case the ultraviolet (UV)-absorption of the undulated Au@Ag nanoplatelets can be tuned depending on the degree of decoration with silver nanoparticles. Comparing the Raman scattering data for the plasmon driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4′-dimercaptoazobenzene (DMAB) one can conclude that the most important effect of surface modification with a 75 times higher enhancement factor in SERS experiments becomes available by decoration with gold spikes.}, language = {en} } @article{SchultzeSchmidt2019, author = {Schultze, Christiane and Schmidt, Bernd}, title = {Functionalized Benzofurans via Microwave-Promoted Tandem Claisen-Rearrangement/5-endo-dig Cyclization}, series = {Journal of heterocyclic chemistry}, volume = {56}, journal = {Journal of heterocyclic chemistry}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-152X}, doi = {10.1002/jhet.3671}, pages = {2619 -- 2629}, year = {2019}, abstract = {Ortho-allyloxy alkinyl benzenes undergo, upon microwave irradiation in dimethylformamide, a tandem sequence of Claisen-rearrangement and 5-endo-dig cyclization to furnish 7-allyl-substituted benzofurans. With terminal alkynes, chroman-4-ones and enaminoketones become the main products. A mechanistic proposal for this observation relies on a reaction of the starting material with the solvent dimethylformamide under the microwave conditions.}, language = {en} } @article{KleinpeterKoch2019, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Benzyne - an acetylene- or cumulene-like electronic structure?}, series = {Tetrahedron}, volume = {75}, journal = {Tetrahedron}, number = {33}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2019.07.011}, pages = {4663 -- 4668}, year = {2019}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of benzyne 1 and analogues (benzene 2, 1,2,3-cyclohexatriene 3, cyclohexen-3-yne 4, cyclohexen-4-yne 5, cyclohexyne 6) have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values could be employed to compare the diatropic ring current effects of benzene and benzyne, and, when compared with the spatial magnetic properties of the analogues, to answer the question whether the benzyne electronic structure is more acetylene- or cumulene-like, supported by structural data and delta(C-13)/ppm values. (C) 2019 Published by Elsevier Ltd.}, language = {en} } @article{NoteKoetzKosmella2006, author = {Note, Carine and Koetz, Joachim and Kosmella, Sabine}, title = {Structural changes in poly(ethyleneimine) modified microemulsion}, series = {Journal of colloid and interface science}, volume = {302}, journal = {Journal of colloid and interface science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9797}, doi = {10.1016/j.jcis.2006.06.071}, pages = {662 -- 668}, year = {2006}, abstract = {The influence of branched poly(ethyleneimine) on the phase behavior of the system sodium dodecylsulfate/toluene-pentanol (1:1)/water has been studied. The isotropic microemulsions still exist when water is replaced with aqueous solutions of PEI (up to 30\% in weight), but their stability is significantly influenced. From a polymer concentration of 20 wt\%, the polymer enhances the solubilization of water in oil, changes the sign of the spontaneous curvature of the surfactant film, and induces an inversion of the microemulsion type from water-in-oil (L-2) to oil-in-water (L-1), by the formation of a bicontinuous channel. Further investigations show that the addition of polymer in the L-2 phase changes the droplet-droplet interactions as the conductivity drops and the percolation disappears. In the bicontinuous channel, higher viscosities can be detected, as well as a weak percolation followed by a steep increase of the conductivity, which can be related to evident structural changes in the system. DSC measurements allow then to follow the changes of the water properties in the system, from interfacial-water in the L-2 phase to free-water in the sponge-like phase. Finally, all the measurements performed permit to characterize the structural transitions in the system and to understand the role of the added polymer.}, language = {en} } @phdthesis{Ziemann2020, author = {Ziemann, Vanessa}, title = {Toxische Effekte von Arsenolipiden in humanen Kulturzellen und Caenorhabditis elegans}, school = {Universit{\"a}t Potsdam}, pages = {112}, year = {2020}, language = {de} } @article{LangeWagnerZentel2006, author = {Lange, Birger and Wagner, J{\"u}rgen and Zentel, Rudolf}, title = {Fabrication of robust high-quality ORMOCER (R) inverse opals}, series = {Macromolecular rapid communications}, volume = {27}, journal = {Macromolecular rapid communications}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.200600429}, pages = {1746 -- 1751}, year = {2006}, abstract = {The nanostructuring of ORMOCER (R) to form inverse opals is described. For this purpose a polymer opal is used as a template and infiltrated with liquid ORMOCER (R). After photopolymerization of the resin the host opal is dissolved in tetrahydrofuran and an ORMOCER (R) inverse opal is obtained. It shows excellent periodicity (by SEM) and optical properties to reveal a high degree of face centered cubic order. This replication process leads to a nanostructured photonic crystal with the outstanding mechanical properties of ORMOCER (R) and high temperature stability up to 350 degrees C.}, language = {en} } @article{KappBeissenhirtzGeyeretal.2006, author = {Kapp, A. and Beissenhirtz, Moritz Karl and Geyer, F. and Scheller, F. and Viezzoli, Maria Silvia and Lisdat, Fred}, title = {Electrochemical and sensorial behavior of SOD mutants immobilized on gold electrodes in aqueous/organic solvent mixtures}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {18}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, publisher = {Wiley}, address = {Weinheim}, issn = {1040-0397}, doi = {10.1002/elan.200603620}, pages = {1909 -- 1915}, year = {2006}, abstract = {A cysteine mutant of a monomeric human Cu, Zn-SOD (Glycine 61, Serine 142) has been immobilized directly on gold electrodes using the thiol groups introduced. The electrochemical behavior of the surface confined protein was studied in mixtures of aqueous buffer and DMSO up to an organic solvent content of 60\%. The formal potential was found to be rather independent of the DMSO content. However, half peak width increased and the redoxactive amount clearly decreased with raising DMSO content. In addition, the kinetics of the heterogeneous electron transfer became slower; but still a quasireversible electrochemical conversion of the mutant SOD was feasible. Thus, the electrodes were applied for sensorial superoxide detection. At a potential of +220 mV vs. Ag/AgCl advantage was taken of the partial oxidation reaction of the enzyme. A defined superoxide signal was obtained in solutions up to 40\% DMSO. The sensitivity of the mutant electrodes decreased linearly with the organic solvent content in solution but was still higher compared to conventional cyt.c based sensors. At DMSO concentrations higher than 40\% no sensor response was detected.}, language = {en} } @article{HeNoorRamosParraetal.2020, author = {He, Hai and Noor, Elad and Ramos-Parra, Perla A. and Garc{\´i}a-Valencia, Liliana E. and Patterson, Jenelle A. and D{\´i}az de la Garza, Roc{\´i}o I. and Hanson, Andrew D. and Bar-Even, Arren}, title = {In Vivo Rate of Formaldehyde Condensation with Tetrahydrofolate}, series = {Metabolites}, volume = {10}, journal = {Metabolites}, number = {65}, publisher = {MDPI}, address = {Basel}, issn = {2218-1989}, doi = {10.3390/metabo10020065}, pages = {15}, year = {2020}, abstract = {Formaldehyde is a highly reactive compound that participates in multiple spontaneous reactions, but these are mostly deleterious and damage cellular components. In contrast, the spontaneous condensation of formaldehyde with tetrahydrofolate (THF) has been proposed to contribute to the assimilation of this intermediate during growth on C1 carbon sources such as methanol. However, the in vivo rate of this condensation reaction is unknown and its possible contribution to growth remains elusive. Here, we used microbial platforms to assess the rate of this condensation in the cellular environment. We constructed Escherichia coli strains lacking the enzymes that naturally produce 5,10-methylene-THF. These strains were able to grow on minimal medium only when equipped with a sarcosine (N-methyl-glycine) oxidation pathway that sustained a high cellular concentration of formaldehyde, which spontaneously reacts with THF to produce 5,10-methylene-THF. We used flux balance analysis to derive the rate of the spontaneous condensation from the observed growth rate. According to this, we calculated that a microorganism obtaining its entire biomass via the spontaneous condensation of formaldehyde with THF would have a doubling time of more than three weeks. Hence, this spontaneous reaction is unlikely to serve as an effective route for formaldehyde assimilation.}, language = {en} } @article{LaiFengHeiletal.2019, author = {Lai, Feili and Feng, Jianrui and Heil, Tobias and Tian, Zhihong and Schmidt, Johannes and Wang, Gui-Chang and Oschatz, Martin}, title = {Partially delocalized charge in Fe-doped NiCo2S4 nanosheet-mesoporous carbon-composites for high-voltage supercapacitors}, series = {Journal of materials chemistry : A, Materials for energy and sustainability}, volume = {7}, journal = {Journal of materials chemistry : A, Materials for energy and sustainability}, number = {33}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7488}, doi = {10.1039/c9ta06250e}, pages = {19342 -- 19347}, year = {2019}, abstract = {Unraveling the effect of transition-metal doping on the energy storage properties of bimetallic sulfides remains a grand challenge. Herein, we construct bimetallic sulfide nanosheets and hence deliberately introduce transition-metal doping domains on their surface. The resulting materials show not only an enhanced density of states near the Fermi level but also partially delocalized charge as shown by density functional theory (DFT) calculations. Fe-doped NiCo2S4 nanosheets wrapped on N,S-doped ordered mesoporous carbon (Fe-NiCo2S4@N,S-CMK-3) are prepared, which show an enhanced specific capacitance of 197.8 F g(-1) in ionic liquid-based supercapacitors at a scan rate of 2 mV s(-1). This is significantly higher as compared to the capacitance of 155.2 and 135.9 F g(-1) of non-iron-doped NiCo2S4@N,S-CMK and Fe-NiCo2S4@CMK-3 electrodes, respectively. This result arises from the enhanced ionic liquid polarization effect and transportation ability from the Fe-NiCo2S4 surface and N,S-CMK-3 structure. Furthermore, the importance of matching multi-dimensional structures and ionic liquid ion sizes in the fabrication of asymmetric supercapacitors (ASCs) is demonstrated. As a result, the ASC device exhibits a high energy density of 107.5 W h kg(-1) at a power density of 100 W kg(-1) in a working-voltage window of 4 V when using Fe-NiCo2S4@N,S-CMK-3 and N,S-CMK-3 as positive and negative electrodes, respectively. This work puts forward a new direction to design supercapacitor composite electrodes for efficient ionic liquid coupling.}, language = {en} } @article{ShouBremerRindfleischetal.2019, author = {Shou, Keyun and Bremer, Anne and Rindfleisch, Tobias and Knox-Brown, Patrick and Hirai, Mitsuhiro and Rekas, Agata and Garvey, Christopher J. and Hincha, Dirk K. and Stadler, Andreas M. and Thalhammer, Anja}, title = {Conformational selection of the intrinsically disordered plant stress protein COR15A in response to solution osmolarity - an X-ray and light scattering study}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {21}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {34}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c9cp01768b}, pages = {18727 -- 18740}, year = {2019}, abstract = {The plant stress protein COR15A stabilizes chloroplast membranes during freezing. COR15A is an intrinsically disordered protein (IDP) in aqueous solution, but acquires an alpha-helical structure during dehydration or the increase of solution osmolarity. We have used small- and wide-angle X-ray scattering (SAXS/WAXS) combined with static and dynamic light scattering (SLS/DLS) to investigate the structural and hydrodynamic properties of COR15A in response to increasing solution osmolarity. Coarse-grained ensemble modelling allowed a structure-based interpretation of the SAXS data. Our results demonstrate that COR15A behaves as a biomacromolecule with polymer-like properties which strongly depend on solution osmolarity. Biomacromolecular self-assembly occurring at high solvent osmolarity is initiated by the occurrence of two specific structural subpopulations of the COR15A monomer. The osmolarity dependent structural selection mechanism is an elegant way for conformational regulation and assembly of COR15A. It highlights the importance of the polymer-like properties of IDPs for their associated biological function.}, language = {en} } @article{GarnierLaschewsky2006, author = {Garnier, Sebastien and Laschewsky, Andre}, title = {Non-ionic amphiphilic block copolymers by RAFT-polymerization and their self-organization}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {284}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, publisher = {Springer}, address = {Berlin}, issn = {0303-402X}, doi = {10.1007/s00396-006-1484-9}, pages = {1243 -- 1254}, year = {2006}, abstract = {Water-soluble, amphiphilic diblock copolymers were synthesized by reversible addition fragmentation chain transfer polymerization. They consist of poly(butyl acrylate) as hydrophobic block with a low glass transition temperature and three different nonionic water-soluble blocks, namely, the classical hydrophilic block poly(dimethylacrylamide), the strongly hydrophilic poly(acryloyloxyethyl methylsulfoxide), and the thermally sensitive poly(N-acryloylpyrrolidine). Aqueous micellar solutions of the block copolymers were prepared and characterized by static and dynamic light scattering analysis (DLS and SLS). No critical micelle concentration could be detected. The micellization was thermodynamically favored, although kinetically slow, exhibiting a marked dependence on the preparation conditions. The polymers formed micelles with a hydrodynamic diameter from 20 to 100 nm, which were stable upon dilution. The micellar size was correlated with the composition of the block copolymers and their overall molar mass. The micelles formed with the two most hydrophilic blocks were particularly stable upon temperature cycles, whereas the thermally sensitive poly(N-acryloylpyrrolidine) block showed a temperature-induced precipitation. According to combined SLS and DLS analysis, the micelles exhibited an elongated shape such as rods or worms. It should be noted that the block copolymers with the most hydrophilic poly(sulfoxide) block formed inverse micelles in certain organic solvents.}, language = {en} } @article{SchmidtNave2006, author = {Schmidt, Bernd and Nave, Stefan}, title = {Stereoselective syntheses of enantiomerically pure 2,5-disubstituted dihydropyrans based on olefin metathesis}, series = {The journal of organic chemistry}, volume = {71}, journal = {The journal of organic chemistry}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/jo061190k}, pages = {7364 -- 7369}, year = {2006}, abstract = {A short synthesis of 2,5-disubstituted dihydropyrans starting from D-mannitol as a chiral building block is described. Our synthetic approach combines ruthenium-catalyzed ring closing olefin metathesis and palladium-catalyzed nucleophilic substitution.}, language = {en} } @misc{LutzKristenSkrabaniaetal.2006, author = {Lutz, Jean-Francois and Kristen, Juliane and Skrabania, Katja and Laschewsky, Andre}, title = {POLY 14-Synthetic strategies for preparing multicompartment micelles}, series = {Abstracts of papers / American Chemical Society}, volume = {232}, journal = {Abstracts of papers / American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, isbn = {0-8412-7426-6}, issn = {0065-7727}, pages = {1}, year = {2006}, abstract = {The fabrication of compartmented micellar systems is an exciting new area of research in the field of polymer self-assembly. Multicompartment micelles composed of a water-soluble shell and a segregated hydrophobic core can be obtained via direct aqueous self-assembly of preformed polymeric amphiphiles possessing one hydrophilic segment and two incompatible hydrophobic segments (e.g. hydrocarbon and fluorocarbon blocks). Such macromolecular building-blocks were prepared in the present work principally via reversible addition-fragmentation transfer polymerization (RAFT). Polysoaps or triblock macrosurfactants can be synthesized in high yields by RAFT under relatively straightforward experimental conditions.}, language = {en} } @article{LendleinBalkTarazonaetal.2019, author = {Lendlein, Andreas and Balk, Maria and Tarazona, Natalia A. and Gould, Oliver E. C.}, title = {Bioperspectives for Shape-Memory Polymers as Shape Programmable, Active Materials}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {20}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/acs.biomac.9b01074}, pages = {3627 -- 3640}, year = {2019}, abstract = {Within the natural world, organisms use information stored in their material structure to generate a physical response to a wide variety of environmental changes. The ability to program synthetic materials to intrinsically respond to environmental changes in a similar manner has the potential to revolutionize material science. By designing polymeric devices capable of responsively changing shape or behavior based on information encoded into their structure, we can create functional physical behavior, including a shape memory and an actuation capability. Here we highlight the stimuli-responsiveness and shape-changing ability of biological materials and biopolymer-based materials, plus their potential biomedical application, providing a bioperspective on shape-memory materials. We address strategies to incorporate a shape memory (actuation) function in polymeric materials, conceptualized in terms of its relationship with inputs (environmental stimuli) and outputs (shape change). Challenges and opportunities associated with the integration of several functions in a single material body to achieve multifunctionality are discussed. Finally, we describe how elements that sense, convert, and transmit stimuli have been used to create multisensitive materials.}, language = {en} } @article{JiaQuanLiuetal.2019, author = {Jia, He and Quan, Ting and Liu, Xuelian and Bai, Lu and Wang, Jiande and Boujioui, Fadoi and Ye, Ran and Vald, Alexandru and Lu, Yan and Gohy, Jean-Francois}, title = {Core-shell nanostructured organic redox polymer cathodes with superior performance}, series = {Nano Energy}, volume = {64}, journal = {Nano Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2211-2855}, doi = {10.1016/j.nanoen.2019.103949}, pages = {9}, year = {2019}, abstract = {Core-shell nanoparticles stabilized by a cationic surfactant are prepared from the poly(2,2,6,6-tetra-methylpiperidinyloxy-4-yl methacrylate) redox polymer. The nanoparticles are further self-assembled with negatively charged reduced graphene oxide nanosheets and negatively charged mull-walled carbon nanotubes. This results in the formation of a free-standing cathode with a layered nanostructure and a high content of redox polymer that exhibits 100\% utilization of the active substance with a measured capacity as high as 105 mAh/g based on the whole weight of the electrode.}, language = {en} } @article{KurokiTchoupaHartliebetal.2019, author = {Kuroki, Agnes and Tchoupa, Arnaud Kengmo and Hartlieb, Matthias and Peltier, Raoul and Locock, Katherine E. S. and Unnikrishnan, Meera and Perrier, Sebastien}, title = {Targeting intracellular, multi-drug resistant Staphylococcus aureus with guanidinium polymers by elucidating the structure-activity relationship}, series = {Biomaterials : biomaterials reviews online}, volume = {217}, journal = {Biomaterials : biomaterials reviews online}, publisher = {Elsevier}, address = {Oxford}, issn = {0142-9612}, doi = {10.1016/j.biomaterials.2019.119249}, pages = {13}, year = {2019}, abstract = {Intracellular persistence of bacteria represents a clinical challenge as bacteria can thrive in an environment protected from antibiotics and immune responses. Novel targeting strategies are critical in tackling antibiotic resistant infections. Synthetic antimicrobial peptides (SAMPs) are interesting candidates as they exhibit a very high antimicrobial activity. We first compared the activity of a library of ammonium and guanidinium polymers with different sequences (statistical, tetrablock and diblock) synthesized by RAFT polymerization against methicillin-resistant S. aureus (MRSA) and methicillin-sensitive strains (MSSA). As the guanidinium SAMPs were the most potent, they were used to treat intracellular S. aureus in keratinocytes. The diblock structure was the most active, reducing the amount of intracellular MSSA and MRSA by two-fold. We present here a potential treatment for intracellular, multi-drug resistant bacteria, using a simple and scalable strategy.}, language = {en} } @article{KruegerLinker2021, author = {Kr{\"u}ger, Tobias and Linker, Torsten}, title = {Synthesis of gamma-spirolactams by Birch reduction of arenes}, series = {European journal of organic chemistry}, volume = {2021}, journal = {European journal of organic chemistry}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1099-0690}, doi = {10.1002/ejoc.202100056}, pages = {1585 -- 1591}, year = {2021}, abstract = {A convenient method for the synthesis of gamma-spirolactams in only three steps is described. Birch reduction of inexpensive and commercially available aromatic carboxylic acids in the presence of chloroacetonitrile affords nitriles in moderate to good yields. Suitable precursors are methyl-substituted benzoic acids, naphthoic, and anthroic acid. Subsequent catalytic hydrogenation proceeds smoothly with PtO2 or Raney Ni as catalysts and lactams are isolated in excellent yields and stereoselectivities. Thus, up to 3 new stereogenic centers can be constructed as sole diastereomers from achiral benzoic acids. Furthermore, it is possible to control the degree of saturation at different pressures, affording products with 0, 1, or 2 double bonds. Overall, more than 15 new gamma-spirolactams have been synthesized in analytically pure form.}, language = {en} } @article{FudickarMetzMaiLindeetal.2021, author = {Fudickar, Werner and Metz, Melanie and Mai-Linde, Yasemin and Kr{\"u}ger, Tobias and Kelling, Alexandra and Sperlich, Eric and Linker, Torsten}, title = {Influence of functional groups on the ene reaction of singlet oxygen with 1,4-cyclohexadienes}, series = {Photochemistry and photobiology : the official journal of the American Society for Photobiology}, volume = {97}, journal = {Photochemistry and photobiology : the official journal of the American Society for Photobiology}, number = {6}, publisher = {Wiley}, address = {Malden, Mass.}, issn = {0031-8655}, doi = {10.1111/php.13422}, pages = {1289 -- 1297}, year = {2021}, abstract = {The photooxygenation of 1,4-cyclohexadienes has been studied with a special focus on regio- and stereoselectivities. In all examples, only the methyl-substituted double bond undergoes an ene reaction with singlet oxygen, to afford hydroperoxides in moderate to good yields. We explain the high regioselectivities by a "large-group effect" of the adjacent quaternary stereocenter. Nitriles decrease the reactivity of singlet oxygen, presumably by quenching, but can stabilize proposed per-epoxide intermediates by polar interactions resulting in different stereoselectivities. Spiro lactams and lactones show an interesting effect on regio- and stereoselectivities of the ene reactions. Thus, singlet oxygen attacks the double bond preferentially anti to the carbonyl group, affording only one regioisomeric hydroperoxide. If the reaction occurs from the opposite face, the other regioisomer is exclusively formed by severe electrostatic repulsion in a perepoxide intermediate. We explain this unusual behavior by the fixed geometry of spiro compounds and call it a "spiro effect" in singlet oxygen ene reactions.}, language = {en} } @article{RajuLiebigKlemkeetal.2020, author = {Raju, Rajarshi Roy and Liebig, Ferenc and Klemke, Bastian and Koetz, Joachim}, title = {Ultralight magnetic aerogels from Janus emulsions}, series = {RSC Advances}, volume = {10}, journal = {RSC Advances}, number = {13}, publisher = {RSC Publishing}, address = {London}, issn = {2046-2069}, doi = {10.1039/c9ra10247g}, pages = {7492 -- 7499}, year = {2020}, abstract = {Magnetite containing aerogels were synthesized by freeze-drying olive oil/silicone oil-based Janus emulsion gels containing gelatin and sodium carboxymethylcellulose (NaCMC). The magnetite nanoparticles dispersed in olive oil are processed into the gel and remain in the macroporous aerogel after removing the oil components. The coexistence of macropores from the Janus droplets and mesopores from freeze-drying of the hydrogels in combination with the magnetic properties offer a special hierarchical pore structure, which is of relevance for smart supercapacitors, biosensors, and spilled oil sorption and separation. The morphology of the final structure was investigated in dependence on initial compositions. More hydrophobic aerogels with magnetic responsiveness were synthesized by bisacrylamide-crosslinking of the hydrogel. The crosslinked aerogels can be successfully used in magnetically responsive clean up experiments of the cationic dye methylene blue.}, language = {en} } @article{RajuLiebigKlemkeetal.2018, author = {Raju, Rajarshi Roy and Liebig, Ferenc and Klemke, Bastian and Koetz, Joachim}, title = {pH-responsive magnetic Pickering Janus emulsions}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {296}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-018-4321-z}, pages = {1039 -- 1046}, year = {2018}, abstract = {We report ultrasonically generated pH-responsive Pickering Janus emulsions of olive oil and silicone oil with controllable droplet size and engulfment. Chitosan was used as a pH-responsive emulsifier. The increase of pH from 2 to 6 leads to a transition from completely engulfed double emulsion droplets to dumbbell-shaped Janus droplets accompanied by a significant decrease of droplet diameter and a more homogeneous size distribution. The results can be elucidated by the conformational change of chitosan from a more extended form at pH 2 to a more flexible form at pH 4-5. Magnetic responsiveness to the emulsion was attributed by dispersing superparamagnetic nanoparticles (Fe3O4 with diameter of 13 +/- 2 nm) in the olive oil phase before preparing the Janus emulsion. Incorporation of magnetic nanoparticles leads to superior emulsion stability, drastically reduced droplet diameters, and opened the way to control movement and orientation of the Janus droplets according to an external magnetic field.}, language = {en} } @article{HuwerBanerji2020, author = {Huwer, Johannes and Banerji, Amitabh}, title = {Corona sei Dank?!}, series = {Chemie konkret : CHEMKON ; Forum f{\"u}r Unterricht und Didaktik}, volume = {27}, journal = {Chemie konkret : CHEMKON ; Forum f{\"u}r Unterricht und Didaktik}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0944-5846}, doi = {10.1002/ckon.202000037}, pages = {105 -- 106}, year = {2020}, language = {de} } @article{HermannsKeller2022, author = {Hermanns, Jolanda and Keller, David}, title = {The development, use, and evaluation of digital games and quizzes in an introductory course on organic chemistry for preservice chemistry teachers}, series = {Journal of chemical education / Division of Chemical Education, Inc., American Chemical Society}, volume = {99}, journal = {Journal of chemical education / Division of Chemical Education, Inc., American Chemical Society}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-9584}, doi = {10.1021/acs.jchemed.2c00058}, pages = {1715 -- 1724}, year = {2022}, abstract = {Due to the COVID pandemic, the introductory course on organic chemistry was developed and conducted as anonline course. To ensure methodical variety in this course,educational games and quizzes have been developed, used, and evaluated. The attendance of the course, and therefore also the use of the quizzes and games, was voluntary. The quizzes'main goalwas to give the students the opportunity to check whether they had memorized the knowledge needed in the course. Another goal was to make transparent which knowledge the students shouldmemorize by rote. The evaluation shows that the students hadnot internalized all knowledge which they should apply in severaltasks on organic chemistry. They answered multiselect questions in general less well than single-select questions. The games shouldcombine fun with learning. The evaluation of the games shows that the students rated them very well. The students used thosegames again for their exam preparation, as the monitoring of accessing the games showed. Students'experiences with usingelectronic devices in general or for quizzes and games have also been evaluated, because their experience could influence thestudents'assessment of the quizzes and games used in our study. However, the students used electronic devices regularly and shouldtherefore be technically competent to use our quizzes and games. The evaluation showed that the use of digital games for learningpurposes is not very common, neither at school nor at university, although the students had worked with such tools before. Thestudents are also very interested in using and developing such digital games not only for their own study, but also for their future work at school}, language = {en} } @article{RajuKoetz2022, author = {Raju, Rajarshi Roy and Koetz, Joachim}, title = {Pickering Janus emulsions stabilized with gold nanoparticles}, series = {Langmuir : the ACS journal of surfaces and colloids / American Chemical Society}, volume = {38}, journal = {Langmuir : the ACS journal of surfaces and colloids / American Chemical Society}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.1c02256}, pages = {147 -- 155}, year = {2022}, abstract = {We report a modified approach to the batch scale preparation of completely engulfed core-shell emulsions or partially engulfed Janus emulsions with colorful optical properties, containing water, olive oil, and silicone oil. The in situ reduction of gold chloride, forming gold nanoparticles (AuNPs) at the olive oil interface in the absence or presence of chitosan, leads to the formation of compartmentalized olive-silicone oil emulsion droplets in water. In the absence of additional reducing components, time-dependent morphological transformations from partial engulfment to complete engulfment were observed. Similar experiments in the presence of chitosan or presynthesized AuNPs show an opposite time-dependent trend of transformation of core-shell structures into partially engulfed ones. This behavior can be understood by a time-dependent rearrangement of the AuNPs at the interface and changes of the interfacial tension. The Pickering effect of AuNPs at oil-water and oil-oil interfaces brings not only color effects to individual microdroplets, which are of special relevance for the preparation of new optical elements, but also a surprising self-assembly of droplets.}, language = {en} } @article{Schwarze2021, author = {Schwarze, Thomas}, title = {Determination of Pd2+ by fluorescence enhancement caused by an off-switching of an energy- and an electron transfer}, series = {ChemistrySelect}, volume = {6}, journal = {ChemistrySelect}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2365-6549}, doi = {10.1002/slct.202003975}, pages = {318 -- 322}, year = {2021}, abstract = {In this paper, we introduce a fluorescent dye 1, which is able to detect selectively Pd2+ by a clear fluorescence enhancement (FE) in THF. In the presence of eight Pd2+ equivalents, we observed a fluorescence enhancement factor (FEF) of 28.3. The high Pd2+ induced FEF can be explained by an off switching of multiple quenching processes within 1 by Pd2+. In the free dye 1 a photoinduced electron transfer (PET) and energy transfer (ET) takes place and quenches the anthracenic fluorescence. The coordination of eight Pd2+ units by the alkylthio-substituted porphyrazine receptor suppresses the PET and ET quenching process and the anthracenic fluorescence is switched on.}, language = {en} } @article{HwangWalczakOschatzetal.2019, author = {Hwang, Jongkook and Walczak, Ralf and Oschatz, Martin and Tarakina, Nadezda and Schmidt, Bernhard V. K. J.}, title = {Micro-Blooming: Hierarchically Porous Nitrogen-Doped Carbon Flowers Derived from Metal-Organic Mesocrystals}, series = {Small}, volume = {15}, journal = {Small}, number = {37}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1613-6810}, doi = {10.1002/smll.201901986}, pages = {10}, year = {2019}, abstract = {Synthesis of 3D flower-like zinc-nitrilotriacetic acid (ZnNTA) mesocrystals and their conformal transformation to hierarchically porous N-doped carbon superstructures is reported. During the solvothermal reaction, 2D nanosheet primary building blocks undergo oriented attachment and mesoscale assembly forming stacked layers. The secondary nucleation and growth preferentially occurs at the edges and defects of the layers, leading to formation of 3D flower-like mesocrystals comprised of interconnected 2D micropetals. By simply varying the pyrolysis temperature (550-1000 degrees C) and the removal method of in the situ-generated Zn species, nonporous parent mesocrystals are transformed to hierarchically porous carbon flowers with controllable surface area (970-1605 m(2) g(-1)), nitrogen content (3.4-14.1 at\%), pore volume (0.95-2.19 cm(3) g(-1)), as well as pore diameter and structures. The carbon flowers prepared at 550 degrees C show high CO2/N-2 selectivity due to the high nitrogen content and the large fraction of (ultra)micropores, which can greatly increase the CO2 affinity. The results show that the physicochemical properties of carbons are highly dependent on the thermal transformation and associated pore formation process, rather than directly inherited from parent precursors. The present strategy demonstrates metal-organic mesocrystals as a facile and versatile means toward 3D hierarchical carbon superstructures that are attractive for a number of potential applications.}, language = {en} } @misc{PrestelMoeller2015, author = {Prestel, Andreas and M{\"o}ller, Heiko Michael}, title = {Spatio-temporal control of cellular uptake achieved by photoswitchable cell-penetrating peptides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89658}, pages = {701 -- 704}, year = {2015}, abstract = {The selective uptake of compounds into specific cells of interest is a major objective in cell biology and drug delivery. By incorporation of a novel, thermostable azobenzene moiety we generated peptides that can be switched optically between an inactive state and an active, cell-penetrating state with excellent spatio-temporal control.}, language = {en} } @article{AbbasVranicHoffmannetal.2018, author = {Abbas, Ioana M. and Vranic, Marija and Hoffmann, Holger and El-Khatib, Ahmed H. and Montes-Bay{\´o}n, Mar{\´i}a and M{\"o}ller, Heiko Michael and Weller, Michael G.}, title = {Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR⁺}, series = {International Journal of Molecular Sciences}, volume = {19}, journal = {International Journal of Molecular Sciences}, number = {8}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms19082271}, pages = {16}, year = {2018}, abstract = {Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1\% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others.}, language = {en} } @article{PrestelMoeller2015, author = {Prestel, Andreas and M{\"o}ller, Heiko Michael}, title = {Spatio-temporal control of cellular uptake achieved by photoswitchable cell-penetrating peptides}, series = {Chemical communications : ChemComm}, journal = {Chemical communications : ChemComm}, number = {52}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1364-548X}, doi = {10.1039/C5CC06848G}, pages = {701 -- 704}, year = {2015}, abstract = {The selective uptake of compounds into specific cells of interest is a major objective in cell biology and drug delivery. By incorporation of a novel, thermostable azobenzene moiety we generated peptides that can be switched optically between an inactive state and an active, cell-penetrating state with excellent spatio-temporal control.}, language = {en} } @misc{AbbasVranicHoffmannetal.2019, author = {Abbas, Ioana M. and Vranic, Marija and Hoffmann, Holger and El-Khatib, Ahmed H. and Montes-Bay{\´o}n, Mar{\´i}a and M{\"o}ller, Heiko Michael and Weller, Michael G.}, title = {Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR⁺}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {701}, issn = {1866-8372}, doi = {10.25932/publishup-42792}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427926}, year = {2019}, abstract = {Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1\% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others.}, language = {en} } @misc{KrsticReinischSchuppetal.2018, author = {Krstic, Jelena and Reinisch, Isabel and Schupp, Michael and Schulz, Tim Julius and Prokesch, Andreas}, title = {p53 functions in adipose tissue metabolism and homeostasis}, series = {International journal of molecular sciences}, volume = {19}, journal = {International journal of molecular sciences}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms19092622}, pages = {21}, year = {2018}, abstract = {As a tumor suppressor and the most frequently mutated gene in cancer, p53 is among the best-described molecules in medical research. As cancer is in most cases an age-related disease, it seems paradoxical that p53 is so strongly conserved from early multicellular organisms to humans. A function not directly related to tumor suppression, such as the regulation of metabolism in nontransformed cells, could explain this selective pressure. While this role of p53 in cellular metabolism is gradually emerging, it is imperative to dissect the tissue-and cell-specific actions of p53 and its downstream signaling pathways. In this review, we focus on studies reporting p53's impact on adipocyte development, function, and maintenance, as well as the causes and consequences of altered p53 levels in white and brown adipose tissue (AT) with respect to systemic energy homeostasis. While whole body p53 knockout mice gain less weight and fat mass under a high-fat diet owing to increased energy expenditure, modifying p53 expression specifically in adipocytes yields more refined insights: (1) p53 is a negative regulator of in vitro adipogenesis; (2) p53 levels in white AT are increased in diet-induced and genetic obesity mouse models and in obese humans; (3) functionally, elevated p53 in white AT increases senescence and chronic inflammation, aggravating systemic insulin resistance; (4) p53 is not required for normal development of brown AT; and (5) when p53 is activated in brown AT in mice fed a high-fat diet, it increases brown AT temperature and brown AT marker gene expression, thereby contributing to reduced fat mass accumulation. In addition, p53 is increasingly being recognized as crucial player in nutrient sensing pathways. Hence, despite existence of contradictory findings and a varying density of evidence, several functions of p53 in adipocytes and ATs have been emerging, positioning p53 as an essential regulatory hub in ATs. Future studies need to make use of more sophisticated in vivo model systems and should identify an AT-specific set of p53 target genes and downstream pathways upon different (nutrient) challenges to identify novel therapeutic targets to curb metabolic diseases}, language = {en} } @article{SchulzeWehrholdHille2018, author = {Schulze, Sven and Wehrhold, Michel and Hille, Carsten}, title = {Femtosecond-Pulsed laser written and etched fiber bragg gratings for fiber-optical biosensing}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s18092844}, pages = {20}, year = {2018}, abstract = {We present the development of a label-free, highly sensitive fiber-optical biosensor for online detection and quantification of biomolecules. Here, the advantages of etched fiber Bragg gratings (eFBG) were used, since they induce a narrowband Bragg wavelength peak in the reflection operation mode. The gratings were fabricated point-by-point via a nonlinear absorption process of a highly focused femtosecond-pulsed laser, without the need of prior coating removal or specific fiber doping. The sensitivity of the Bragg wavelength peak to the surrounding refractive index (SRI), as needed for biochemical sensing, was realized by fiber cladding removal using hydrofluoric acid etching. For evaluation of biosensing capabilities, eFBG fibers were biofunctionalized with a single-stranded DNA aptamer specific for binding the C-reactive protein (CRP). Thus, the CRP-sensitive eFBG fiber-optical biosensor showed a very low limit of detection of 0.82 pg/L, with a dynamic range of CRP detection from approximately 0.8 pg/L to 1.2 mu g/L. The biosensor showed a high specificity to CRP even in the presence of interfering substances. These results suggest that the proposed biosensor is capable for quantification of CRP from trace amounts of clinical samples. In addition, the adaption of this eFBG fiber-optical biosensor for detection of other relevant analytes can be easily realized.}, language = {en} } @article{PazHeydenreichSchmidtetal.2018, author = {Paz, Cristian and Heydenreich, Matthias and Schmidt, Bernd and Vadra, Nahir and Baggio, Ricardo}, title = {Three new dihydro-beta-agarofuran sesquiterpenes from the seeds of Maytenus boaria}, series = {Acta Crystallographica Section C}, volume = {74}, journal = {Acta Crystallographica Section C}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {2053-2296}, doi = {10.1107/S2053229618005429}, pages = {564 -- 570}, year = {2018}, abstract = {As part of a project studying the secondary metabolites extracted from the Chilean flora, we report herein three new beta-agarofuran sesquiterpenes, namely (1S,4S,5S,6R,7R,8R,9R,10S)-6-acetoxy-4,9-dihydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b] oxepine-5,10-diylbis(furan-3-carboxylate), C27H32O11, (II), (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-9-hydroxy-2,2,5a, 9-tetramethyloctahydro-2H-3,9a-methanobenzo[ b] oxepine-5,10-diyl bis(furan-3-carboxylate), C27H32O10, (III), and (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-10-(benzoyloxy)-9-hydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b]oxepin-5-yl furan-3-carboxylate, C29H34O9, (IV), obtained from the seeds of Maytenus boaria and closely associated with a recently published relative [Paz et al. (2017). Acta Cryst. C73, 451-457]. In the (isomorphic) structures of (II) and (III), the central decalin system is esterified with an acetate group at site 1 and furoate groups at sites 6 and 9, and differ at site 8, with an OH group in (II) and no substituent in (III). This position is also unsubstituted in (IV), with site 6 being occupied by a benzoate group. The chirality of the skeletons is described as 1S, 4S, 5S, 6R, 7R, 8R, 9R, 10S in (II) and 1S, 4S, 5S, 6R, 7R, 9S, 10S in (III) and (IV), matching the chirality suggested by NMR studies. This difference in the chirality sequence among the title structures (in spite of the fact that the three skeletons are absolutely isostructural) is due to the differences in the environment of site 8, i.e. OH in (II) and H in (III) and (IV). This diversity in substitution, in turn, is responsible for the differences in the hydrogen-bonding schemes, which is discussed.}, language = {en} }