@misc{MatternPudellLaskinetal.2021, author = {Mattern, M. and Pudell, Jan-Etienne and Laskin, G. and von Reppert, A. and Bargheer, Matias}, title = {Analysis of the temperature- and fluence-dependent magnetic stress in laser-excited SrRuO3}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51571}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515718}, pages = {11}, year = {2021}, abstract = {We use ultrafast x-ray diffraction to investigate the effect of expansive phononic and contractive magnetic stress driving the picosecond strain response of a metallic perovskite SrRuO3 thin film upon femtosecond laser excitation. We exemplify how the anisotropic bulk equilibrium thermal expansion can be used to predict the response of the thin film to ultrafast deposition of energy. It is key to consider that the laterally homogeneous laser excitation changes the strain response compared to the near-equilibrium thermal expansion because the balanced in-plane stresses suppress the Poisson stress on the picosecond timescale. We find a very large negative Gr{\"u}neisen constant describing the large contractive stress imposed by a small amount of energy in the spin system. The temperature and fluence dependence of the strain response for a double-pulse excitation scheme demonstrates the saturation of the magnetic stress in the high-fluence regime.}, language = {en} } @article{MatternPudellLaskinetal.2021, author = {Mattern, Maximilian and Pudell, Jan-Etienne and Laskin, Gennadii and Reppert, Alexander von and Bargheer, Matias}, title = {Analysis of the temperature- and fluence-dependent magnetic stress in laser-excited SrRuO3}, series = {Structural dynamics}, volume = {8}, journal = {Structural dynamics}, number = {2}, publisher = {AIP Publishing LLC}, address = {Melville, NY}, issn = {2329-7778}, doi = {10.1063/4.0000072}, pages = {9}, year = {2021}, abstract = {We use ultrafast x-ray diffraction to investigate the effect of expansive phononic and contractive magnetic stress driving the picosecond strain response of a metallic perovskite SrRuO3 thin film upon femtosecond laser excitation. We exemplify how the anisotropic bulk equilibrium thermal expansion can be used to predict the response of the thin film to ultrafast deposition of energy. It is key to consider that the laterally homogeneous laser excitation changes the strain response compared to the near-equilibrium thermal expansion because the balanced in-plane stresses suppress the Poisson stress on the picosecond timescale. We find a very large negative Gr{\"u}neisen constant describing the large contractive stress imposed by a small amount of energy in the spin system. The temperature and fluence dependence of the strain response for a double-pulse excitation scheme demonstrates the saturation of the magnetic stress in the high-fluence regime.}, language = {en} } @misc{PudellMaznevHerzogetal.2018, author = {Pudell, Jan-Etienne and Maznev, Alexei and Herzog, Marc and Kronseder, M. and Back, Christian and Malinowski, Gregory and von Reppert, Alexander and Bargheer, Matias}, title = {Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {797}, issn = {1866-8372}, doi = {10.25932/publishup-42623}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426233}, pages = {7}, year = {2018}, abstract = {Ultrafast heat transport in nanoscale metal multilayers is of great interest in the context of optically induced demagnetization, remagnetization and switching. If the penetration depth of light exceeds the bilayer thickness, layer-specific information is unavailable from optical probes. Femtosecond diffraction experiments provide unique experimental access to heat transport over single digit nanometer distances. Here, we investigate the structural response and the energy flow in the ultrathin double-layer system: gold on ferromagnetic nickel. Even though the excitation pulse is incident from the Au side, we observe a very rapid heating of the Ni lattice, whereas the Au lattice initially remains cold. The subsequent heat transfer from Ni to the Au lattice is found to be two orders of magnitude slower than predicted by the conventional heat equation and much slower than electron-phonon coupling times in Au. We present a simplified model calculation highlighting the relevant thermophysical quantities.}, language = {en} } @article{vonReppertPuddellKocetal.2016, author = {von Reppert, Alexander and Puddell, J. and Koc, A. and Reinhardt, M. and Leitenberger, Wolfram and Dumesnil, K. and Zamponi, Flavio and Bargheer, Matias}, title = {Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet}, series = {Structural dynamics}, volume = {3}, journal = {Structural dynamics}, publisher = {AIP Publishing LLC}, address = {Melville, NY}, issn = {2329-7778}, doi = {10.1063/1.4961253}, year = {2016}, abstract = {We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the N{\´e}el temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost.}, language = {en} } @misc{vonReppertPuddellKocetal.2016, author = {von Reppert, Alexander and Puddell, J. and Koc, A. and Reinhardt, M. and Leitenberger, Wolfram and Dumesnil, K. and Zamponi, Flavio and Bargheer, Matias}, title = {Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98710}, pages = {11}, year = {2016}, abstract = {We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the N{\´e}el temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost.}, language = {en} } @article{ZeuschnerMatternPudelletal.2021, author = {Zeuschner, S. P. and Mattern, M. and Pudell, Jan-Etienne and von Reppert, A. and R{\"o}ssle, M. and Leitenberger, Wolfram and Schwarzkopf, J. and Boschker, J. E. and Herzog, Marc and Bargheer, Matias}, title = {Reciprocal space slicing}, series = {Structural Dynamics}, volume = {8}, journal = {Structural Dynamics}, publisher = {AIP Publishing LLC}, address = {Melville, NY}, issn = {2329-7778}, doi = {10.1063/4.0000040}, pages = {11}, year = {2021}, abstract = {An experimental technique that allows faster assessment of out-of-plane strain dynamics of thin film heterostructures via x-ray diffraction is presented. In contrast to conventional high-speed reciprocal space-mapping setups, our approach reduces the measurement time drastically due to a fixed measurement geometry with a position-sensitive detector. This means that neither the incident (ω) nor the exit (2θ) diffraction angle is scanned during the strain assessment via x-ray diffraction. Shifts of diffraction peaks on the fixed x-ray area detector originate from an out-of-plane strain within the sample. Quantitative strain assessment requires the determination of a factor relating the observed shift to the change in the reciprocal lattice vector. The factor depends only on the widths of the peak along certain directions in reciprocal space, the diffraction angle of the studied reflection, and the resolution of the instrumental setup. We provide a full theoretical explanation and exemplify the concept with picosecond strain dynamics of a thin layer of NbO2.}, language = {en} } @misc{ZeuschnerMatternPudelletal.2021, author = {Zeuschner, S. P. and Mattern, M. and Pudell, Jan-Etienne and von Reppert, A. and R{\"o}ssle, M. and Leitenberger, Wolfram and Schwarzkopf, J. and Boschker, J. E. and Herzog, Marc and Bargheer, Matias}, title = {Reciprocal space slicing}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1137}, issn = {1866-8372}, doi = {10.25932/publishup-49976}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-499761}, pages = {13}, year = {2021}, abstract = {An experimental technique that allows faster assessment of out-of-plane strain dynamics of thin film heterostructures via x-ray diffraction is presented. In contrast to conventional high-speed reciprocal space-mapping setups, our approach reduces the measurement time drastically due to a fixed measurement geometry with a position-sensitive detector. This means that neither the incident (ω) nor the exit (2θ) diffraction angle is scanned during the strain assessment via x-ray diffraction. Shifts of diffraction peaks on the fixed x-ray area detector originate from an out-of-plane strain within the sample. Quantitative strain assessment requires the determination of a factor relating the observed shift to the change in the reciprocal lattice vector. The factor depends only on the widths of the peak along certain directions in reciprocal space, the diffraction angle of the studied reflection, and the resolution of the instrumental setup. We provide a full theoretical explanation and exemplify the concept with picosecond strain dynamics of a thin layer of NbO2.}, language = {en} } @article{SarhanKoopmanSchuetzetal.2019, author = {Sarhan, Radwan Mohamed and Koopman, Wouter-Willem Adriaan and Schuetz, Roman and Schmid, Thomas and Liebig, Ferenc and Koetz, Joachim and Bargheer, Matias}, title = {The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-38627-2}, pages = {8}, year = {2019}, abstract = {Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding.}, language = {en} } @misc{SarhanKoopmanSchuetzetal.2018, author = {Sarhan, Radwan Mohamed and Koopman, Wouter-Willem Adriaan and Schuetz, Roman and Schmid, Thomas and Liebig, Ferenc and Koetz, Joachim and Bargheer, Matias}, title = {The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {698}, issn = {1866-8372}, doi = {10.25932/publishup-42719}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427197}, pages = {8}, year = {2018}, abstract = {Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding.}, language = {en} } @article{vonReppertMatternPudelletal.2020, author = {von Reppert, Alexander and Mattern, Maximilian and Pudell, Jan-Etienne and Zeuschner, Steffen Peer and Dumesnil, Karine and Bargheer, Matias}, title = {Unconventional picosecond strain pulses resulting from the saturation of magnetic stress within a photoexcited rare earth layer}, series = {Structural Dynamics}, volume = {7}, journal = {Structural Dynamics}, number = {024303}, publisher = {AIP Publishing LLC}, address = {Melville, NY}, issn = {2329-7778}, doi = {10.1063/1.5145315}, pages = {13}, year = {2020}, abstract = {Optical excitation of spin-ordered rare earth metals triggers a complex response of the crystal lattice since expansive stresses from electron and phonon excitations compete with a contractive stress induced by spin disorder. Using ultrafast x-ray diffraction experiments, we study the layer specific strain response of a dysprosium film within a metallic heterostructure upon femtosecond laser-excitation. The elastic and diffusive transport of energy to an adjacent, non-excited detection layer clearly separates the contributions of strain pulses and thermal excitations in the time domain. We find that energy transfer processes to magnetic excitations significantly modify the observed conventional bipolar strain wave into a unipolar pulse. By modeling the spin system as a saturable energy reservoir that generates substantial contractive stress on ultrafast timescales, we can reproduce the observed strain response and estimate the time- and space dependent magnetic stress. The saturation of the magnetic stress contribution yields a non-monotonous total stress within the nanolayer, which leads to unconventional picosecond strain pulses.}, language = {en} }