@misc{PanzerBenderGronau2021, author = {Panzer, Marcel and Bender, Benedict and Gronau, Norbert}, title = {Deep reinforcement learning in production planning and control}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, issn = {2701-6277}, doi = {10.25932/publishup-60572}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-605722}, pages = {13}, year = {2021}, abstract = {Increasingly fast development cycles and individualized products pose major challenges for today's smart production systems in times of industry 4.0. The systems must be flexible and continuously adapt to changing conditions while still guaranteeing high throughputs and robustness against external disruptions. Deep reinforcement learning (RL) algorithms, which already reached impressive success with Google DeepMind's AlphaGo, are increasingly transferred to production systems to meet related requirements. Unlike supervised and unsupervised machine learning techniques, deep RL algorithms learn based on recently collected sensorand process-data in direct interaction with the environment and are able to perform decisions in real-time. As such, deep RL algorithms seem promising given their potential to provide decision support in complex environments, as production systems, and simultaneously adapt to changing circumstances. While different use-cases for deep RL emerged, a structured overview and integration of findings on their application are missing. To address this gap, this contribution provides a systematic literature review of existing deep RL applications in the field of production planning and control as well as production logistics. From a performance perspective, it became evident that deep RL can beat heuristics significantly in their overall performance and provides superior solutions to various industrial use-cases. Nevertheless, safety and reliability concerns must be overcome before the widespread use of deep RL is possible which presumes more intensive testing of deep RL in real world applications besides the already ongoing intensive simulations.}, language = {en} } @inproceedings{PanzerBenderGronau2021, author = {Panzer, Marcel and Bender, Benedict and Gronau, Norbert}, title = {Deep reinforcement learning in production planning and control}, series = {Proceedings of the Conference on Production Systems and Logistics}, booktitle = {Proceedings of the Conference on Production Systems and Logistics}, publisher = {Institutionelles Repositorium der Leibniz Universit{\"a}t Hannover}, address = {Hannover}, issn = {2701-6277}, doi = {10.15488/11238}, pages = {535 -- 545}, year = {2021}, abstract = {Increasingly fast development cycles and individualized products pose major challenges for today's smart production systems in times of industry 4.0. The systems must be flexible and continuously adapt to changing conditions while still guaranteeing high throughputs and robustness against external disruptions. Deep rein- forcement learning (RL) algorithms, which already reached impressive success with Google DeepMind's AlphaGo, are increasingly transferred to production systems to meet related requirements. Unlike supervised and unsupervised machine learning techniques, deep RL algorithms learn based on recently collected sensor- and process-data in direct interaction with the environment and are able to perform decisions in real-time. As such, deep RL algorithms seem promising given their potential to provide decision support in complex environments, as production systems, and simultaneously adapt to changing circumstances. While different use-cases for deep RL emerged, a structured overview and integration of findings on their application are missing. To address this gap, this contribution provides a systematic literature review of existing deep RL applications in the field of production planning and control as well as production logistics. From a performance perspective, it became evident that deep RL can beat heuristics significantly in their overall performance and provides superior solutions to various industrial use-cases. Nevertheless, safety and reliability concerns must be overcome before the widespread use of deep RL is possible which presumes more intensive testing of deep RL in real world applications besides the already ongoing intensive simulations.}, language = {en} } @article{GrumGronau2024, author = {Grum, Marcus and Gronau, Norbert}, title = {The impact of knowledge characteristics on process performance}, series = {Business process management journal}, volume = {30}, journal = {Business process management journal}, number = {4}, publisher = {Emerald}, address = {Bingley}, issn = {1463-7154}, doi = {10.1108/BPMJ-10-2023-0853}, pages = {1088 -- 1110}, year = {2024}, abstract = {Purpose With shorter product cycles and a growing number of knowledge-intensive business processes, time consumption is a highly relevant target factor in measuring the performance of contemporary business processes. This research aims to extend prior research on the effects of knowledge transfer velocity at the individual level by considering the effect of complexity, stickiness, competencies, and further demographic factors on knowledge-intensive business processes at the conversion-specific levels. Design/methodology/approach We empirically assess the impact of situation-dependent knowledge transfer velocities on time consumption in teams and individuals. Further, we issue the demographic effect on this relationship. We study a sample of 178 experiments of project teams and individuals applying ordinary least squares (OLS) for regression analysis-based modeling. Findings The authors find that time consumed at knowledge transfers is negatively associated with the complexity of tasks. Moreover, competence among team members has a complementary effect on this relationship and stickiness retards knowledge transfers. Thus, while demographic factors urgently need to be considered for effective and speedy knowledge transfers, these influencing factors should be addressed on a conversion-specific basis so that some tasks are realized in teams best while others are not. Guidelines and interventions are derived to identify best task realization variants, so that process performance is improved by a new kind of process improvement method. Research limitations/implications This study establishes empirically the importance of conversion-specific influence factors and demographic factors as drivers of high knowledge transfer velocities in teams and among individuals. The contribution connects the field of knowledge management to important streams in the wider business literature: process improvement, management of knowledge resources, design of information systems, etc. Whereas the model is highly bound to the experiment tasks, it has high explanatory power and high generalizability to other contexts. Practical implications Team managers should take care to allow the optimal knowledge transfer situation within the team. This is particularly important when knowledge sharing is central, e.g. in product development and consulting processes. If this is not possible, interventions should be applied to the individual knowledge transfer situation to improve knowledge transfers among team members. Social implications Faster and more effective knowledge transfers improve the performance of both commercial and non-commercial organizations. As nowadays, the individual is faced with time pressure to finalize tasks, the deliberated increase of knowledge transfer velocity is a core capability to realize this goal. Quantitative knowledge transfer models result in more reliable predictions about the duration of knowledge transfers. These allow the target-oriented modification of knowledge transfer situations so that processes speed up, private firms are more competitive and public services are faster to citizens. Originality/value Time consumption is an increasingly relevant factor in contemporary business but so far not been explored in experiments at all. This study extends current knowledge by considering quantitative effects on knowledge velocity and improved knowledge transfers.}, language = {en} }