@article{MaharjanSinghHanifetal.2022, author = {Maharjan, Romi Singh and Singh, Ajay Vikram and Hanif, Javaria and Rosenkranz, Daniel and Haidar, Rashad and Shelar, Amruta and Singh, Shubham Pratap and Dey, Aditya and Patil, Rajendra and Zamboni, Paolo and Laux, Peter and Luch, Andreas}, title = {Investigation of the associations between a nanomaterial's microrheology and toxicology}, series = {ACS omega / American Chemical Society}, volume = {7}, journal = {ACS omega / American Chemical Society}, number = {16}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {2470-1343}, doi = {10.1021/acsomega.2c00472}, pages = {13985 -- 13997}, year = {2022}, abstract = {With the advent of Nanotechnology, the use of nanomaterials in consumer products is increasing on a daily basis, due to which a deep understanding and proper investigation regarding their safety and risk assessment should be a major priority. To date, there is no investigation regarding the microrheological properties of nanomaterials (NMs) in biological media. In our study, we utilized in silico models to select the suitable NMs based on their physicochemical properties such as solubility and lipophilicity. Then, we established a new method based on dynamic light scattering (DLS) microrheology to get the mean square displacement (MSD) and viscoelastic property of two model NMs that are dendrimers and cerium dioxide nanoparticles in Dulbecco's Modified Eagle Medium (DMEM) complete media at three different concentrations for both NMs. Subsequently, we established the cytotoxicological profiling using water-soluble tetrazolium salt-1 (WST-1) and a reactive oxygen species (ROS) assay. To take one step forward, we further looked into the tight junction properties of the cells using immunostaining with Zonula occluden-1 (ZO-1) antibodies and found that the tight junction function or transepithelial resistance (TEER) was affected in response to the microrheology and cytotoxicity. The quantitative polymerase chain reaction (q-PCR) results in the gene expression of ZO-1 after the 24 h treatment with NPs further validates the findings of immunostaining results. This new method that we established will be a reference point for other NM studies which are used in our day-to-day consumer products.}, language = {en} } @article{CastroFernandoReegetal.2019, author = {Castro, Jose Pedro and Fernando, Raquel and Reeg, Sandra and Meinl, Walter and Almeida, Henrique and Grune, Tilman}, title = {Non-enzymatic cleavage of Hsp90 by oxidative stress leads to actin aggregate formation}, series = {Redox Biology}, volume = {21}, journal = {Redox Biology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-2317}, doi = {10.1016/j.redox.2019.101108}, pages = {10}, year = {2019}, abstract = {Aging is accompanied by the accumulation of oxidized proteins. To remove them, cells employ the proteasomal and autophagy-lysosomal systems; however, if the clearance rate is inferior to its formation, protein aggregates form as a hallmark of proteostasis loss. In cells, during stress conditions, actin aggregates accumulate leading to impaired proliferation and reduced proteasomal activity, as observed in cellular senescence. The heat shock protein 90 (Hsp90) is a molecular chaperone that binds and protects the proteasome from oxidative inactivation. We hypothesized that in oxidative stress conditions a malfunction of Hsp90 occurs resulting in the aforementioned protein aggregates. Here, we demonstrate that upon oxidative stress Hsp90 loses its function in a highly specific non-enzymatic iron-catalyzed oxidation event and its breakdown product, a cleaved form of Hsp90 (Hsp90cl), acquires a new function in mediating the accumulation of actin aggregates. Moreover, the prevention of Hsp90 cleavage reduces oxidized actin accumulation, whereas transfection of the cleaved form of Hsp90 leads to an enhanced accumulation of oxidized actin. This indicates a clear role of the Hsp90cl in the aggregation of oxidized proteins.}, language = {en} } @article{KehmRueckriemenWeberetal.2019, author = {Kehm, Richard and R{\"u}ckriemen, Jana and Weber, Daniela and Deubel, Stefanie and Grune, Tilman and H{\"o}hn, Annika}, title = {Endogenous advanced glycation end products in pancreatic islets after short-term carbohydrate intervention in obese, diabetes-prone mice}, series = {Nutrition \& Diabetes}, volume = {9}, journal = {Nutrition \& Diabetes}, publisher = {Nature Publ. Group}, address = {London}, issn = {2044-4052}, doi = {10.1038/s41387-019-0077-x}, pages = {5}, year = {2019}, abstract = {Diet-induced hyperglycemia is described as one major contributor to the formation of advanced glycation end products (AGEs) under inflammatory conditions, crucial in type 2 diabetes progression. Previous studies have indicated high postprandial plasma AGE-levels in diabetic patients and after long-term carbohydrate feeding in animal models. Pancreatic islets play a key role in glucose metabolism; thus, their susceptibility to glycation reactions due to high amounts of dietary carbohydrates is of special interest. Therefore, diabetes-prone New Zealand Obese (NZO) mice received either a carbohydrate-free, high-fat diet (CFD) for 11 weeks or were additionally fed with a carbohydrate-rich diet (CRD) for 7 days. In the CRD group, hyperglycemia and hyperinsulinemia were induced accompanied by increasing plasma 3-nitrotyrosine (3-NT) levels, higher amounts of 3-NT and inducible nitric oxide synthase (iNOS) within pancreatic islets. Furthermore, N-epsilon-carboxymethyllysine (CML) was increased in the plasma of CRD-fed NZO mice and substantially higher amounts of arg-pyrimidine, pentosidine and the receptor for advanced glycation end products (RAGE) were observed in pancreatic islets. These findings indicate that a short-term intervention with carbohydrates is sufficient to form endogenous AGEs in plasma and pancreatic islets of NZO mice under hyperglycemic and inflammatory conditions.}, language = {en} } @article{MenzelLongreeAbrahametal.2022, author = {Menzel, Juliane and Longree, Alessa and Abraham, Klaus and Schulze, Matthias Bernd and Weikert, Cornelia}, title = {Dietary and plasma phospholipid profiles in vegans and omnivores-results from the RBVD study}, series = {Nutrients}, volume = {14}, journal = {Nutrients}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu14142900}, pages = {13}, year = {2022}, abstract = {Over the last few years, the vegan diet has become increasingly popular in Germany. It has been proposed that this diet is generally lower in fat, but less is known about the impact on fatty acid (FA) profiles. Therefore, the cross-sectional "Risks and Benefits of a Vegan Diet" (RBVD) study (n = 72) was used to investigate dietary FA intake as well as plasma phospholipid FA in vegans (n = 36) compared to omnivores (n = 36). Vegans had a significantly lower dietary intake of total fat (median 86 g/day, IQR 64-111) in comparison to omnivores (median 104 g/day, IQR 88-143, p = 0.004). Further, vegans had a lower intake of saturated fatty acids (SFA) (p < 0.0001) and monounsaturated fatty acids (MUFA) (p = 0.001) compared to omnivores. Vegans had a higher intake in total polyunsaturated fatty acids (PUFA), omega-3 and omega-6 PUFA compared to omnivores, but without statistical significance after Bonferroni correction. According to plasma phospholipid profiles, relatively lower proportions of SFA (p < 0.0001), total trans fatty acids (TFA) (p = 0.0004) and omega-3-FA (p < 0.0001), but higher proportions of omega-6-FA (p < 0.0001) were observed in vegans. With the exception of omega-3 PUFA, a vegan diet is associated with a more favorable dietary fat intake and more favorable plasma FA profiles and therefore may reduce cardiovascular risk.}, language = {en} } @article{KoelmanPivovarovaRamichPfeifferetal.2019, author = {Koelman, Liselot A. and Pivovarova-Ramich, Olga and Pfeiffer, Andreas F. H. and Grune, Tilman and Aleksandrova, Krasimira}, title = {Cytokines for evaluation of chronic inflammatory status in ageing research}, series = {Immunity \& Ageing}, volume = {16}, journal = {Immunity \& Ageing}, publisher = {BMC}, address = {London}, issn = {1742-4933}, doi = {10.1186/s12979-019-0151-1}, pages = {12}, year = {2019}, abstract = {Background: There is a growing interest in the role of inflammageing for chronic disease development. Cytokines are potent soluble immune mediators that can be used as target biomarkers of inflammageing; however, their measurement in human samples has been challenging. This study aimed to assess the reliability of a pro- and anti-inflammatory cytokine panel in a sample of healthy people measured with a novel electrochemiluminescent multiplex immunoassay platform (Meso Scale Discovery, MSD), and to characterize their associations with metabolic and inflammatory phenotypes.}, language = {en} } @article{WeitkunatBishopWittmuessetal.2021, author = {Weitkunat, Karolin and Bishop, Christopher Allen and Wittm{\"u}ss, Maria and Machate, Tina and Schifelbein, Tina and Schulze, Matthias Bernd and Klaus, Susanne}, title = {Effect of microbial status on hepatic odd-chain fatty acids is diet-dependent}, series = {Nutrients / Molecular Diversity Preservation International (MDPI)}, volume = {13}, journal = {Nutrients / Molecular Diversity Preservation International (MDPI)}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu13051546}, pages = {15}, year = {2021}, abstract = {Odd-chain fatty acids (OCFA) are inversely associated with type-2-diabetes in epidemiological studies. They are considered as a biomarker for dairy intake because fermentation in ruminants yields high amounts of propionate, which is used as the primer for lipogenesis. Recently, we demonstrated endogenous OCFA synthesis from propionate in humans and mice, but how this is affected by microbial colonization is still unexplored. Here, we investigated the effect of increasing microbiota complexity on hepatic lipid metabolism and OCFA levels in different dietary settings. Germ-free (GF), gnotobiotic (SIH, simplified human microbiota) or conventional (CONV) C3H/HeOuJ-mice were fed a CHOW or high-fat diet with inulin (HFI) to induce microbial fermentation. We found that hepatic lipogenesis was increased with increasing microbiota complexity, independently of diet. In contrast, OCFA formation was affected by diet as well as microbiota. On CHOW, hepatic OCFA and intestinal gluconeogenesis decreased with increasing microbiota complexity (GF > SIH > CONV), while cecal propionate showed a negative correlation with hepatic OCFA. On HFI, OCFA levels were highest in SIH and positively correlated with cecal propionate. The propionate content in the CHOW diet was 10 times higher than that of HFI. We conclude that bacterial propionate production affects hepatic OCFA formation, unless this effect is masked by dietary propionate intake.}, language = {en} } @article{BirukovPolemitiJaegeretal.2022, author = {Birukov, Anna and Polemiti, Elli and Jaeger, Susanne and Stefan, Norbert and Schulze, Matthias Bernd}, title = {Fetuin-A and risk of diabetes-related vascular complications}, series = {Cardiovascular diabetology}, volume = {21}, journal = {Cardiovascular diabetology}, number = {1}, publisher = {BMC}, address = {London}, issn = {1475-2840}, doi = {10.1186/s12933-021-01439-8}, pages = {11}, year = {2022}, abstract = {Background Fetuin-A is a hepatokine which has the capacity to prevent vascular calcification. Moreover, it is linked to the induction of metabolic dysfunction, insulin resistance and associated with increased risk of diabetes. It has not been clarified whether fetuin-A associates with risk of vascular, specifically microvascular, complications in patients with diabetes. We aimed to investigate whether pre-diagnostic plasma fetuin-A is associated with risk of complications once diabetes develops. Methods Participants with incident type 2 diabetes and free of micro- and macrovascular disease from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort (n = 587) were followed for microvascular and macrovascular complications (n = 203 and n = 60, respectively, median follow-up: 13 years). Plasma fetuin-A was measured approximately 4 years prior to diabetes diagnosis. Prospective associations between baseline fetuin-A and risk of complications were assessed with Cox regression. Results In multivariable models, fetuin-A was linearly inversely associated with incident total and microvascular complications, hazard ratio (HR, 95\% CI) per standard deviation (SD) increase: 0.86 (0.74; 0.99) for total, 0.84 (0.71; 0.98) for microvascular and 0.92 (0.68; 1.24) for macrovascular complications. After additional adjustment for cardiometabolic plasma biomarkers, including triglycerides and high-density lipoprotein, the associations were slightly attenuated: 0.88 (0.75; 1.02) for total, 0.85 (0.72; 1.01) for microvascular and 0.95 (0.67; 1.34) for macrovascular complications. No interaction by sex could be observed (p > 0.10 for all endpoints). Conclusions Our data show that lower plasma fetuin-A levels measured prior to the diagnosis of diabetes may be etiologically implicated in the development of diabetes-associated microvascular disease.}, language = {en} } @article{SchroeterNeugartSchreineretal.2019, author = {Schr{\"o}ter, David and Neugart, Susanne and Schreiner, Monika and Grune, Tilman and Rohn, Sascha and Ott, Christiane}, title = {Amaranth's 2-Caffeoylisocitric Acid—An Anti-Inflammatory Caffeic Acid Derivative That Impairs NF-κB Signaling in LPS-Challenged RAW 264.7 Macrophages}, series = {Nutrients}, volume = {11}, journal = {Nutrients}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu11030571}, pages = {14}, year = {2019}, abstract = {For centuries, Amaranthus sp. were used as food, ornamentals, and medication. Molecular mechanisms, explaining the health beneficial properties of amaranth, are not yet understood, but have been attributed to secondary metabolites, such as phenolic compounds. One of the most abundant phenolic compounds in amaranth leaves is 2-caffeoylisocitric acid (C-IA) and regarding food occurrence, C-IA is exclusively found in various amaranth species. In the present study, the anti-inflammatory activity of C-IA, chlorogenic acid, and caffeic acid in LPS-challenged macrophages (RAW 264.7) has been investigated and cellular contents of the caffeic acid derivatives (CADs) were quantified in the cells and media. The CADs were quantified in the cell lysates in nanomolar concentrations, indicating a cellular uptake. Treatment of LPS-challenged RAW 264.7 cells with 10 µM of CADs counteracted the LPS effects and led to significantly lower mRNA and protein levels of inducible nitric oxide synthase, tumor necrosis factor alpha, and interleukin 6, by directly decreasing the translocation of the nuclear factor κB/Rel-like containing protein 65 into the nucleus. This work provides new insights into the molecular mechanisms that attribute to amaranth's anti-inflammatory properties and highlights C-IA's potential as a health-beneficial compound for future research.}, language = {en} } @article{EichelmannSchulzeWittenbecheretal.2019, author = {Eichelmann, Fabian and Schulze, Matthias Bernd and Wittenbecher, Clemens and Menzel, Juliane and Weikert, Cornelia and di Giuseppe, Romina and Biemann, Ronald and Isermann, Berend and Fritsche, Andreas and Boeing, Heiner and Aleksandrova, Krasimira}, title = {Association of Chemerin Plasma Concentration With Risk of Colorectal Cancer}, series = {JAMA network open}, volume = {2}, journal = {JAMA network open}, number = {3}, publisher = {American Veterinary Medical Association}, address = {Chicago}, issn = {2574-3805}, doi = {10.1001/jamanetworkopen.2019.0896}, pages = {14}, year = {2019}, abstract = {IMPORTANCE Inflammatory processes have been suggested to have an important role in colorectal cancer (CRC) etiology. Chemerin is a recently discovered inflammatory biomarker thought to exert chemotactic, adipogenic, and angiogenic functions. However, its potential link with CRC has not been sufficiently explored. OBJECTIVE To evaluate the prospective association of circulating plasma chemerin concentrations with incident CRC. DESIGN, SETTING, AND PARTICIPANTS Prospective case-cohort study based on 27 548 initially healthy participants from the European Prospective Investigation Into Cancer and Nutrition (EPIC)-Potsdam cohort who were followed for up to 16 years. Baseline study information and samples were collected between August 23, 1994, and September 25, 1998. Recruitment was according to random registry sampling from the geographical area of Potsdam, Germany, and surrounding municipalities. The last date of study follow-up was May 10, 2010. Statistical analysis was conducted in 2018. MAIN OUTCOMES AND MEASURES Incident CRC, colon cancer, and rectal cancer. Baseline chemerin plasma concentrations were measured by enzyme-linked immunosorbent assay. CONCLUSIONS AND RELEVANCE This study found that the association between chemerin concentration and the risk of incident CRC was linear and independent of established CRC risk factors. Further studies are warranted to evaluate chemerin as a novel immune-inflammatory agent in colorectal carcinogenesis.}, language = {en} } @article{GalbeteKroegerJannaschetal.2018, author = {Galbete, Cecilia and Kr{\"o}ger, Janine and Jannasch, Franziska and Iqbal, Khalid and Schwingshackl, Lukas and Schwedhelm, Carolina and Weikert, Cornelia and Boeing, Heiner and Schulze, Matthias Bernd}, title = {Nordic diet, Mediterranean diet, and the risk of chronic diseases}, series = {BMC Medicine}, volume = {16}, journal = {BMC Medicine}, publisher = {BMC}, address = {London}, issn = {1741-7015}, doi = {10.1186/s12916-018-1082-y}, pages = {13}, year = {2018}, abstract = {Background: The Mediterranean Diet (MedDiet) has been acknowledged as a healthy diet. However, its relation with risk of major chronic diseases in non-Mediterranean countries is inconclusive. The Nordic diet is proposed as an alternative across Northern Europe, although its associations with the risk of chronic diseases remain controversial. We aimed to investigate the association between the Nordic diet and the MedDiet with the risk of chronic disease (type 2 diabetes (T2D), myocardial infarction (MI), stroke, and cancer) in the EPIC-Potsdam cohort. Methods: The EPIC-Potsdam cohort recruited 27,548 participants between 1994 and 1998. After exclusion of prevalent cases, we evaluated baseline adherence to a score reflecting the Nordic diet and two MedDiet scores (tMDS, reflecting the traditional MedDiet score, and the MedPyr score, reflecting the MedDiet Pyramid). Cox regression models were applied to examine the association between the diet scores and the incidence of major chronic diseases. Results: During a follow-up of 10.6 years, 1376 cases of T2D, 312 of MI, 321 of stroke, and 1618 of cancer were identified. The Nordic diet showed a statistically non-significant inverse association with incidence of MI in the overall population and of stroke in men. Adherence to the MedDiet was associated with lower incidence of T2D (HR per 1 SD 0.93, 95\% CI 0.88-0.98 for the tMDS score and 0.92, 0.87-0.97 for the MedPyr score). In women, the MedPyr score was also inversely associated with MI. No association was observed for any of the scores with cancer. Conclusions: In the EPIC-Potsdam cohort, the Nordic diet showed a possible beneficial effect on MI in the overall population and for stroke in men, while both scores reflecting the MedDiet conferred lower risk of T2D in the overall population and of MI in women.}, language = {en} } @article{JohnGruneOttetal.2018, author = {John, Cathleen and Grune, Jana and Ott, Christiane and Nowotny, Kerstin and Deubel, Stefanie and K{\"u}hne, Arne and Schubert, Carola and Kintscher, Ulrich and Regitz-Zagrosek, Vera and Grune, Tilman}, title = {Sex Differences in Cardiac Mitochondria in the New Zealand Obese Mouse}, series = {Frontiers in Endocrinology}, volume = {9}, journal = {Frontiers in Endocrinology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-2392}, doi = {10.3389/fendo.2018.00732}, pages = {9}, year = {2018}, abstract = {Background: Obesity is a risk factor for diseases including type 2 diabetes mellitus (T2DM) and cardiovascular disorders. Diabetes itself contributes to cardiac damage. Thus, studying cardiovascular events and establishing therapeutic intervention in the period of type T2DM onset and manifestation are of highest importance. Mitochondrial dysfunction is one of the pathophysiological mechanisms leading to impaired cardiac function. Methods: An adequate animal model for studying pathophysiology of T2DM is the New Zealand Obese (NZO) mouse. These mice were maintained on a high-fat diet (HFD) without carbohydrates for 13 weeks followed by 4 week HFD with carbohydrates. NZO mice developed severe obesity and only male mice developed manifest T2DM. We determined cardiac phenotypes and mitochondrial function as well as cardiomyocyte signaling in this model. Results: The development of an obese phenotype and T2DM in male mice was accompanied by an impaired systolic function as judged by echocardiography and MyH6/7 expression. Moreover, the mitochondrial function only in male NZO hearts was significantly reduced and ERK1/2 and AMPK protein levels were altered. Conclusions: This is the first report demonstrating that the cardiac phenotype in male diabetic NZO mice is associated with impaired cardiac energy function and signaling events.}, language = {en} } @article{BishopMachateHenningetal.2022, author = {Bishop, Christopher Allen and Machate, Tina and Henning, Thorsten and Henkel-Oberl{\"a}nder, Janin and P{\"u}schel, Gerhard and Weber, Daniela and Grune, Tilman and Klaus, Susanne and Weitkunat, Karolin}, title = {Detrimental effects of branched-chain amino acids in glucose tolerance can be attributed to valine induced glucotoxicity in skeletal muscle}, series = {Nutrition \& Diabetes}, volume = {12}, journal = {Nutrition \& Diabetes}, number = {1}, publisher = {Nature Publishing Group}, address = {London}, issn = {2044-4052}, doi = {10.1038/s41387-022-00200-8}, pages = {9}, year = {2022}, abstract = {Objective: Current data regarding the roles of branched-chain amino acids (BCAA) in metabolic health are rather conflicting, as positive and negative effects have been attributed to their intake. Methods: To address this, individual effects of leucine and valine were elucidated in vivo (C57BL/6JRj mice) with a detailed phenotyping of these supplementations in high-fat (HF) diets and further characterization with in vitro approaches (C2C12 myocytes). Results: Here, we demonstrate that under HF conditions, leucine mediates beneficial effects on adiposity and insulin sensitivity, in part due to increasing energy expenditure-likely contributing partially to the beneficial effects of a higher milk protein intake. On the other hand, valine feeding leads to a worsening of HF-induced health impairments, specifically reducing glucose tolerance/ insulin sensitivity. These negative effects are driven by an accumulation of the valine-derived metabolite 3-hydroxyisobutyrate (3HIB). Higher plasma 3-HIB levels increase basal skeletal muscle glucose uptake which drives glucotoxicity and impairs myocyte insulin signaling. Conclusion: These data demonstrate the detrimental role of valine in an HF context and elucidate additional targetable pathways in the etiology of BCAA-induced obesity and insulin resistance.}, language = {en} } @article{JohannKleinertKlaus2021, author = {Johann, Kornelia and Kleinert, Maximilian and Klaus, Susanne}, title = {The role of GDF15 as a myomitokine}, series = {Cells}, volume = {10}, journal = {Cells}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells10112990}, pages = {16}, year = {2021}, abstract = {Growth differentiation factor 15 (GDF15) is a cytokine best known for affecting systemic energy metabolism through its anorectic action. GDF15 expression and secretion from various organs and tissues is induced in different physiological and pathophysiological states, often linked to mitochondrial stress, leading to highly variable circulating GDF15 levels. In skeletal muscle and the heart, the basal expression of GDF15 is very low compared to other organs, but GDF15 expression and secretion can be induced in various stress conditions, such as intense exercise and acute myocardial infarction, respectively. GDF15 is thus considered as a myokine and cardiokine. GFRAL, the exclusive receptor for GDF15, is expressed in hindbrain neurons and activation of the GDF15-GFRAL pathway is linked to an increased sympathetic outflow and possibly an activation of the hypothalamic-pituitary-adrenal (HPA) stress axis. There is also evidence for peripheral, direct effects of GDF15 on adipose tissue lipolysis and possible autocrine cardiac effects. Metabolic and behavioral outcomes of GDF15 signaling can be beneficial or detrimental, likely depending on the magnitude and duration of the GDF15 signal. This is especially apparent for GDF15 production in muscle, which can be induced both by exercise and by muscle disease states such as sarcopenia and mitochondrial myopathy.}, language = {en} } @article{FigueroaCamposPerezBlocketal.2021, author = {Figueroa Campos, Gustavo Adolfo and Perez, Jeffrey Paulo H. and Block, Inga and Sagu Tchewonpi, Sorel and Saravia Celis, Pedro and Taubert, Andreas and Rawel, Harshadrai Manilal}, title = {Preparation of activated carbons from spent coffee and coffee parchment and assessment of their adsorbent efficiency}, series = {Processes : open access journal}, volume = {9}, journal = {Processes : open access journal}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2227-9717}, doi = {10.3390/pr9081396}, pages = {18}, year = {2021}, abstract = {The valorization of coffee wastes through modification to activated carbon has been considered as a low-cost adsorbent with prospective to compete with commercial carbons. So far, very few studies have referred to the valorization of coffee parchment into activated carbon. Moreover, low-cost and efficient activation methods need to be more investigated. The aim of this work was to prepare activated carbon from spent coffee grounds and parchment, and to assess their adsorption performance. The co-calcination processing with calcium carbonate was used to prepare the activated carbons, and their adsorption capacity for organic acids, phenolic compounds and proteins was evaluated. Both spent coffee grounds and parchment showed yields after the calcination and washing treatments of around 9.0\%. The adsorption of lactic acid was found to be optimal at pH 2. The maximum adsorption capacity of lactic acid with standard commercial granular activated carbon was 73.78 mg/g, while the values of 32.33 and 14.73 mg/g were registered for the parchment and spent coffee grounds activated carbons, respectively. The Langmuir isotherm showed that lactic acid was adsorbed as a monolayer and distributed homogeneously on the surface. Around 50\% of total phenols and protein content from coffee wastewater were adsorbed after treatment with the prepared activated carbons, while 44, 43, and up to 84\% of hydrophobic compounds were removed using parchment, spent coffee grounds and commercial activated carbon, respectively; the adsorption efficiencies of hydrophilic compounds ranged between 13 and 48\%. Finally, these results illustrate the potential valorization of coffee by-products parchment and spent coffee grounds into activated carbon and their use as low-cost adsorbent for the removal of organic compounds from aqueous solutions.}, language = {en} } @article{BirukovCuadratPolemitietal.2021, author = {Birukov, Anna and Cuadrat, Rafael R. C. and Polemiti, Elli and Eichelmann, Fabian and Schulze, Matthias Bernd}, title = {Advanced glycation end-products, measured as skin autofluorescence, associate with vascular stiffness in diabetic, pre-diabetic and normoglycemic individuals}, series = {Cardiovascular diabetology}, volume = {20}, journal = {Cardiovascular diabetology}, number = {1}, publisher = {BioMed Central}, address = {London}, issn = {1475-2840}, doi = {10.1186/s12933-021-01296-5}, pages = {11}, year = {2021}, abstract = {Background Advanced glycation end-products are proteins that become glycated after contact with sugars and are implicated in endothelial dysfunction and arterial stiffening. We aimed to investigate the relationships between advanced glycation end-products, measured as skin autofluorescence, and vascular stiffness in various glycemic strata. Methods We performed a cross-sectional analysis within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort, comprising n = 3535 participants (median age 67 years, 60\% women). Advanced glycation end-products were measured as skin autofluorescence with AGE-Reader (TM), vascular stiffness was measured as pulse wave velocity, augmentation index and ankle-brachial index with Vascular Explorer (TM). A subset of 1348 participants underwent an oral glucose tolerance test. Participants were sub-phenotyped into normoglycemic, prediabetes and diabetes groups. Associations between skin autofluorescence and various indices of vascular stiffness were assessed by multivariable regression analyses and were adjusted for age, sex, measures of adiposity and lifestyle, blood pressure, prevalent conditions, medication use and blood biomarkers. Results Skin autofluorescence associated with pulse wave velocity, augmentation index and ankle-brachial index, adjusted beta coefficients (95\% CI) per unit skin autofluorescence increase: 0.38 (0.21; 0.55) for carotid-femoral pulse wave velocity, 0.25 (0.14; 0.37) for aortic pulse wave velocity, 1.00 (0.29; 1.70) for aortic augmentation index, 4.12 (2.24; 6.00) for brachial augmentation index and - 0.04 (- 0.05; - 0.02) for ankle-brachial index. The associations were strongest in men, younger individuals and were consistent across all glycemic strata: for carotid-femoral pulse wave velocity 0.36 (0.12; 0.60) in normoglycemic, 0.33 (- 0.01; 0.67) in prediabetes and 0.45 (0.09; 0.80) in diabetes groups; with similar estimates for aortic pulse wave velocity. Augmentation index was associated with skin autofluorescence only in normoglycemic and diabetes groups. Ankle-brachial index inversely associated with skin autofluorescence across all sex, age and glycemic strata. Conclusions Our findings indicate that advanced glycation end-products measured as skin autofluorescence might be involved in vascular stiffening independent of age and other cardiometabolic risk factors not only in individuals with diabetes but also in normoglycemic and prediabetic conditions. Skin autofluorescence might prove as a rapid and non-invasive method for assessment of macrovascular disease progression across all glycemic strata.}, language = {en} } @article{JannaschNickelBergmannetal.2022, author = {Jannasch, Franziska and Nickel, Daniela V. and Bergmann, Manuela M. and Schulze, Matthias Bernd}, title = {A new evidence-based diet score to capture associations of food consumption and chronic disease risk}, series = {Nutrients / Molecular Diversity Preservation International (MDPI)}, volume = {14}, journal = {Nutrients / Molecular Diversity Preservation International (MDPI)}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu14112359}, pages = {16}, year = {2022}, abstract = {Previously, the attempt to compile German dietary guidelines into a diet score was predominantly not successful with regards to preventing chronic diseases in the EPIC-Potsdam study. Current guidelines were supplemented by the latest evidence from systematic reviews and expert papers published between 2010 and 2020 on the prevention potential of food groups on chronic diseases such as type 2 diabetes, cardiovascular diseases and cancer. A diet score was developed by scoring the food groups according to a recommended low, moderate or high intake. The relative validity and reliability of the diet score, assessed by a food frequency questionnaire, was investigated. The consideration of current evidence resulted in 10 key food groups being preventive of the chronic diseases of interest. They served as components in the diet score and were scored from 0 to 1 point, depending on their recommended intake, resulting in a maximum of 10 points. Both the reliability (r = 0.53) and relative validity (r = 0.43) were deemed sufficient to consider the diet score as a stable construct in future investigations. This new diet score can be a promising tool to investigate dietary intake in etiological research by concentrating on 10 key dietary determinants with evidence-based prevention potential for chronic diseases.}, language = {en} } @article{SchwingshacklRuzanskaAntonetal.2018, author = {Schwingshackl, Lukas and Ruzanska, Ulrike Alexandra and Anton, Verena and Wallroth, Raphael and Ohla, Kathrin and Knueppel, Sven and Schulze, Matthias Bernd and Pischon, Tobias and Deutschbein, Johannes and Schenk, Liane and Warschburger, Petra and Harttig, Ulrich and Boeing, Heiner and Bergmann, Manuela M.}, title = {The NutriAct Family Study: a web-based prospective study on the epidemiological, psychological and sociological basis of food choice}, series = {BMC public health}, volume = {18}, journal = {BMC public health}, publisher = {BMC}, address = {London}, issn = {1471-2458}, doi = {10.1186/s12889-018-5814-x}, pages = {12}, year = {2018}, abstract = {Background: Most studies on food choice have been focussing on the individual level but familial aspects may also play an important role. This paper reports of a novel study that will focus on the familial aspects of the formation of food choice among men and women aged 50-70 years by recruiting spouses and siblings (NutriAct Family Study; NFS). Discussion: Until August 4th 2017, 4783 EPIC-Participants were contacted by mail of which 446 persons recruited 2 to 5 family members (including themselves) resulting in 1032 participants, of whom 82\% had started answering or already completed the questionnaires. Of the 4337 remaining EPIC-participants who had been contacted, 1040 (24\%) did not respond at all, and 3297 (76\%) responded but declined, in 51\% of the cases because of the request to recruit at least 2 family members in the respective age range. The developed recruitment procedures and web-based methods of data collection are capable to generate the required study population including the data on individual and inter-personal determinants which will be linkable to food choice. The information on familial links among the study participants will show the role of familial traits in midlife for the adoption of food choices supporting healthy aging.}, language = {en} } @article{HaeseliDeubelJungetal.2020, author = {H{\"a}seli, Steffen and Deubel, Stefanie and Jung, Tobias and Grune, Tilman and Ott, Christiane}, title = {Cardiomyocyte contractility and autophagy in a premature senescence model of cardiac aging}, series = {Oxidative medicine and cellular longevity}, volume = {2020}, journal = {Oxidative medicine and cellular longevity}, number = {Special Issue}, publisher = {Landes Bioscience}, address = {Austin, Tex.}, issn = {1942-0994}, doi = {10.1155/2020/8141307}, pages = {14}, year = {2020}, abstract = {Globally, cardiovascular diseases are the leading cause of death in the aging population. While the clinical pathology of the aging heart is thoroughly characterized, underlying molecular mechanisms are still insufficiently clarified. The aim of the present study was to establish an in vitro model system of cardiomyocyte premature senescence, culturing heart muscle cells derived from neonatal C57Bl/6J mice for 21 days. Premature senescence of neonatal cardiac myocytes was induced by prolonged culture time in an oxygen-rich postnatal environment. Age-related changes in cellular function were determined by senescence-associated beta-galactosidase activity, increasing presence of cell cycle regulators, such as p16, p53, and p21, accumulation of protein aggregates, and restricted proteolysis in terms of decreasing (macro-)autophagy. Furthermore, the culture system was functionally characterized for alterations in cell morphology and contractility. An increase in cellular size associated with induced expression of atrial natriuretic peptides demonstrated a stress-induced hypertrophic phenotype in neonatal cardiomyocytes. Using the recently developed analytical software tool Myocyter, we were able to show a spatiotemporal constraint in spontaneous contraction behavior during cultivation. Within the present study, the 21-day culture of neonatal cardiomyocytes was defined as a functional model system of premature cardiac senescence to study age-related changes in cardiomyocyte contractility and autophagy.}, language = {en} } @article{KoelmanHuybrechtsBiesbroeketal.2022, author = {Koelman, Liselot A. and Huybrechts, Inge and Biesbroek, Sander and van 't Veer, Pieter and Schulze, Matthias Bernd and Aleksandrova, Krasimira}, title = {Dietary choices impact on greenhouse gas emissions}, series = {Sustainability / Multidisciplinary Digital Publishing Institute (MDPI)}, volume = {14}, journal = {Sustainability / Multidisciplinary Digital Publishing Institute (MDPI)}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su14073854}, pages = {10}, year = {2022}, abstract = {The present study estimated diet-related greenhouse gas emissions (GHGE) and land use (LU) in a sample of adults, examined main dietary contributors of GHGE, and evaluated socio demographic, lifestyle, and wellbeing factors as potential determinants of high environmental impact. A cross-sectional design based on data collected from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort (2010-2012) was used. Usual diet was assessed using food frequency questionnaires. Diet-related GHGE and LU were calculated using a European-average lifecycle analyses-food-item database (SHARP-ID). Information on potential determinants were collected using self-administered questionnaires. Men (n = 404) and women (n = 401) at an average age of 66.0 +/- 8.4 years were included. Dietary-related energy-adjusted GHGE in men was 6.6 +/- 0.9 and in women was 7.0 +/- 1.1 kg CO2 eq per 2000 kcal. LU in men was 7.8 +/- 1.2 and in women was 7.7 +/- 1.2 m(2)/year per 2000 kcal. Food groups contributing to most GHGE included dairy, meat and non-alcoholic beverages. Among women, being single, having a job, being a smoker and having higher BMI were characteristics associated with higher GHGE, whereas for men these included being married, longer sleeping duration and higher BMI. Further studies are warranted to provide insights into population-specific determinants of sustainable dietary choices.}, language = {en} } @article{FitznerFrickeSchreineretal.2021, author = {Fitzner, Maria and Fricke, Anna and Schreiner, Monika and Baldermann, Susanne}, title = {Utilization of regional natural brines for the indoor cultivation of Salicornia europaea}, series = {Sustainability / Multidisciplinary Digital Publishing Institute (MDPI)}, volume = {13}, journal = {Sustainability / Multidisciplinary Digital Publishing Institute (MDPI)}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su132112105}, pages = {12}, year = {2021}, abstract = {Scaling agriculture to the globally rising population demands new approaches for future crop production such as multilayer and multitrophic indoor farming. Moreover, there is a current trend towards sustainable local solutions for aquaculture and saline agriculture. In this context, halophytes are becoming increasingly important for research and the food industry. As Salicornia europaea is a highly salt-tolerant obligate halophyte that can be used as a food crop, indoor cultivation with saline water is of particular interest. Therefore, finding a sustainable alternative to the use of seawater in non-coastal regions is crucial. Our goal was to determine whether natural brines, which are widely distributed and often available in inland areas, provide an alternative water source for the cultivation of saline organisms. This case study investigated the potential use of natural brines for the production of S. europaea. In the control group, which reflects the optimal growth conditions, fresh weight was increased, but there was no significant difference between the treatment groups comparing natural brines with artificial sea water. A similar pattern was observed for carotenoids and chlorophylls. Individual components showed significant differences. However, within treatments, there were mostly no changes. In summary, we showed that the influence of the different chloride concentrations was higher than the salt composition. Moreover, nutrient-enriched natural brine was demonstrated to be a suitable alternative for cultivation of S. europaea in terms of yield and nutritional quality. Thus, the present study provides the first evidence for the future potential of natural brine waters for the further development of aquaculture systems and saline agriculture in inland regions.}, language = {en} }