@article{RancanVolkmannGiulbudagianetal.2019, author = {Rancan, Fiorenza and Volkmann, Hildburg and Giulbudagian, Michael and Schumacher, Fabian and Stanko, Jessica Isolde and Kleuser, Burkhard and Blume-Peytavi, Ulrike and Calderon, Marcelo and Vogt, Annika}, title = {Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels}, series = {Pharmaceutics : Molecular Diversity Preservation International}, volume = {11}, journal = {Pharmaceutics : Molecular Diversity Preservation International}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1999-4923}, doi = {10.3390/pharmaceutics11080394}, pages = {14}, year = {2019}, abstract = {Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1\% tacrolimus ointment. The penetration of the drug was investigated in ex vivo abdominal and breast skin, while different methods for skin barrier disruption were investigated to improve skin permeability or simulate inflammatory conditions with compromised skin barrier. The amount of penetrated tacrolimus was measured in skin extracts by liquid chromatography tandem-mass spectrometry (LC-MS/MS), whereas the inflammatory markers IL-6 and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). Higher amounts of tacrolimus penetrated in breast as compared to abdominal skin or in barrier-disrupted as compared to intact skin, confirming that the stratum corneum is the main barrier for tacrolimus skin penetration. The anti-proliferative effect of the penetrated drug was measured in skin tissue/Jurkat cells co-cultures. Interestingly, tNGs exhibited similar anti-proliferative effects as the 0.1\% tacrolimus ointment. We conclude that polyglycerol-based nanogels represent an interesting alternative to paraffin-based formulations for the treatment of inflammatory skin conditions.}, language = {en} } @article{ReichelRheinHofmannetal.2018, author = {Reichel, Martin and Rhein, Cosima and Hofmann, Lena M. and Monti, Juliana and Japtok, Lukasz and Langgartner, Dominik and F{\"u}chsl, Andrea M. and Kleuser, Burkhard and Gulbins, Erich and Hellerbrand, Claus and Reber, Stefan O. and Kornhuber, Johannes}, title = {Chronic Psychosocial Stress in Mice Is Associated With Increased Acid Sphingomyelinase Activity in Liver and Serum and With Hepatic C16:0-Ceramide Accumulation}, series = {Frontiers in Psychiatry}, volume = {9}, journal = {Frontiers in Psychiatry}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-0640}, doi = {10.3389/fpsyt.2018.00496}, pages = {8}, year = {2018}, abstract = {Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28\% (P = 0.006) and secretory Asm activity by 47\% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40\% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-alpha (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders.}, language = {en} } @article{BernacchioniGhiniCencettietal.2017, author = {Bernacchioni, Caterina and Ghini, Veronica and Cencetti, Francesca and Japtok, Lukasz and Donati, Chiara and Bruni, Paola and Turano, Paola}, title = {NMR metabolomics highlights sphingosine kinase-1 as a new molecular switch in the orchestration of aberrant metabolic phenotype in cancer cells}, series = {Molecular oncology / Federation of European Biochemical Societies}, volume = {11}, journal = {Molecular oncology / Federation of European Biochemical Societies}, publisher = {Wiley}, address = {Hoboken}, issn = {1878-0261}, doi = {10.1002/1878-0261.12048}, pages = {517 -- 533}, year = {2017}, abstract = {Strong experimental evidence in animal and cellular models supports a pivotal role of sphingosine kinase-1 (SK1) in oncogenesis. In many human cancers, SK1 levels are upregulated and these increases are linked to poor prognosis in patients. Here, by employing untargeted NMR- based metabolomic profiling combined with functional validations, we report the crucial role of SK1 in the metabolic shift known as the Warburg effect in A2780 ovarian cancer cells. Indeed, expression of SK1 induced a high glycolytic rate, characterized by increased levels of lactate along with increased expression of the proton/monocarboxylate symporter MCT1, and decreased oxidative metabolism, associated with the accumulation of intermediates of the tricarboxylic acid cycle and reduction in CO2 production. Additionally, SK1-expressing cells displayed a significant increase in glucose uptake paralleled by GLUT3 transporter upregulation. The role of SK1 is not limited to the induction of aerobic glycolysis, affecting metabolic pathways that appear to support the biosynthesis of macromolecules. These findings highlight the role of SK1 signaling axis in cancer metabolic reprogramming, pointing out innovative strategies for cancer therapies.}, language = {en} } @article{ChaykovskaHeunischvonEinemetal.2018, author = {Chaykovska, Lyubov and Heunisch, Fabian and von Einem, Gina and Hocher, Carl-Friedrich and Tsuprykov, Oleg and Pavkovic, Mira and Sandner, Peter and Kretschmer, Axel and Chu, Chang and Elitok, Saban and Stasch, Johannes-Peter and Hocher, Berthold}, title = {Urinary cGMP predicts major adverse renal events in patients with mild renal impairment and/or diabetes mellitus before exposure to contrast medium}, series = {PLoS one}, volume = {13}, journal = {PLoS one}, number = {4}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0195828}, pages = {13}, year = {2018}, abstract = {Background The use of iodine-based contrast agents entails the risk of contrast induced nephropathy (CIN). Radiocontrast agents elicit the third most common cause of nephropathy among hospitalized patients, accounting for 11-12\% of cases. CIN is connected with clinically significant consequences, including increased morbidity, prolonged hospitalization, increased risk of complications, potential need for dialysis, and increased mortality rate. The number of in hospital examinations using iodine-based contrast media has been significantly increasing over the last decade. In order to protect patients from possible complications of such examinations, new biomarkers are needed that are able to predict a risk of contrast-induced nephropathy. Urinary and plasma cyclic guanosine monophosphate (cGMP) concentrations are influenced by renal function. Urinary cGMP is primarily of renal cellular origin. Therefore, we assessed if urinary cGMP concentration may predict major adverse renal events (MARE) after contrast media exposure during coronary angiography. Methods Urine samples were prospectively collected from non-randomized consecutive patients with either diabetes or preexisting impaired kidney function receiving intra-arterial contrast medium (CM) for emergent or elective coronary angiography at the Charite Campus Mitte, University Hospital Berlin. Urinary cGMP concentration in spot urine was analyzed 24 hours after CM exposure. Patients were followed up over 90 days for occurrence of death, initiation of dialysis, doubling of plasma creatinine concentration or MARE. Results In total, 289 consecutive patients were included into the study. Urine cGMP/creatinine ratio 24 hours before CM exposure expressed as mean +/- SD was predictive for the need of dialysis (no dialysis: 89.77 +/- 92.85 mu M/mM, n = 277; need for dialysis: 140.3 +/- 82.90 mu M/mM, n = 12, p = 0.008), death (no death during follow-up: 90.60 +/- 92.50 mu M/mM, n = 280; death during follow-up: 169.88 +/- 81.52 mu M/mM, n = 9; p = 0.002), and the composite endpoint MARE (no MARE: 86.02 +/- 93.17 mu M/mM, n = 271; MARE: 146.64 +/- 74.68 mu M/mM, n = 18, p<0.001) during the follow-up of 90 days after contrast media application. cGMP/creatinine ratio stayed significantly increased at values exceeding 120 pM/mM in patients who developed MARE, required dialysis or died. Conclusions Urinary cGMP/creatinine ratio >= 120 mu M/mM before CM exposure is a promising biomarker for the need of dialysis and all-cause mortality 90 days after CM exposure in patients with preexisting renal impairment or diabetes.}, language = {en} } @article{McNultyGoupilAlbaradoetal.2020, author = {McNulty, Margaret A. and Goupil, Brad A. and Albarado, Diana C. and Casta{\~n}o-Martinez, Teresa and Ambrosi, Thomas H. and Puh, Spela and Schulz, Tim Julius and Sch{\"u}rmann, Annette and Morrison, Christopher D. and Laeger, Thomas}, title = {FGF21, not GCN2, influences bone morphology due to dietary protein restrictions}, series = {Bone Reports}, volume = {12}, journal = {Bone Reports}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-1872}, doi = {10.1016/j.bonr.2019.100241}, pages = {1 -- 10}, year = {2020}, abstract = {Background: Dietary protein restriction is emerging as an alternative approach to treat obesity and glucose intolerance because it markedly increases plasma fibroblast growth factor 21 (FGF21) concentrations. Similarly, dietary restriction of methionine is known to mimic metabolic effects of energy and protein restriction with FGF21 as a required mechanism. However, dietary protein has been shown to be required for normal bone growth, though there is conflicting evidence as to the influence of dietary protein restriction on bone remodeling. The purpose of the current study was to evaluate the effect of dietary protein and methionine restriction on bone in lean and obese mice, and clarify whether FGF21 and general control nonderepressible 2 (GCN2) kinase, that are part of a novel endocrine pathway implicated in the detection of protein restriction, influence the effect of dietary protein restriction on bone. Methods: Adult wild-type (WT) or Fgf21 KO mice were fed a normal protein (18 kcal\%; CON) or low protein (4 kcal\%; LP) diet for 2 or 27 weeks. In addition, adult WT or Gcn2 KO mice were fed a CON or LP diet for 27 weeks. Young New Zealand obese (NZO) mice were placed on high-fat diets that provided protein at control (16 kcal\%; CON), low levels (4 kcal\%) in a high-carbohydrate (LP/HC) or high-fat (LP/HF) regimen, or on high-fat diets (protein, 16 kcal\%) that provided methionine at control (0.86\%; CON-MR) or low levels (0.17\%; MR) for up to 9 weeks. Long bones from the hind limbs of these mice were collected and evaluated with micro-computed tomography (mu CT) for changes in trabecular and cortical architecture and mass. Results: In WT mice the 27-week LP diet significantly reduced cortical bone, and this effect was enhanced by deletion of Fgf21 but not Gcn2. This decrease in bone did not appear after 2 weeks on the LP diet. In addition, Fgf21 KO mice had significantly less bone than their WT counterparts. In obese NZO mice dietary protein and methionine restriction altered bone architecture. The changes were mediated by FGF21 due to methionine restriction in the presence of cystine, which did not increase plasma FGF21 levels and did not affect bone architecture. Conclusions: This study provides direct evidence of a reduction in bone following long-term dietary protein restriction in a mouse model, effects that appear to be mediated by FGF21.}, language = {en} } @article{SchjeideSchenkeSeegeretal.2022, author = {Schjeide, Brit-Maren and Schenke, Maren and Seeger, Bettina and P{\"u}schel, Gerhard}, title = {Validation of a novel double control quantitative copy number PCR method to quantify off-target transgene integration after CRISPR-induced DNA modification}, series = {Methods and protocols : M\&Ps}, volume = {5}, journal = {Methods and protocols : M\&Ps}, number = {3}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2409-9279}, doi = {10.3390/mps5030043}, pages = {1 -- 14}, year = {2022}, abstract = {In order to improve a recently established cell-based assay to assess the potency of botulinum neurotoxin, neuroblastoma-derived SiMa cells and induced pluripotent stem-cells (iPSC) were modified to incorporate the coding sequence of a reporter luciferase into a genetic safe harbor utilizing CRISPR/Cas9. A novel method, the double-control quantitative copy number PCR (dc-qcnPCR), was developed to detect off-target integrations of donor DNA. The donor DNA insertion success rate and targeted insertion success rate were analyzed in clones of each cell type. The dc-qcnPCR reliably quantified the copy number in both cell lines. The probability of incorrect donor DNA integration was significantly increased in SiMa cells in comparison to the iPSCs. This can possibly be explained by the lower bundled relative gene expression of a number of double-strand repair genes (BRCA1, DNA2, EXO1, MCPH1, MRE11, and RAD51) in SiMa clones than in iPSC clones. The dc-qcnPCR offers an efficient and cost-effective method to detect off-target CRISPR/Cas9-induced donor DNA integrations.}, language = {en} } @article{BornhorstNustedeFudickar2019, author = {Bornhorst, Julia and Nustede, Eike Jannik and Fudickar, Sebastian}, title = {Mass Surveilance of C. elegans-Smartphone-Based DIY Microscope and Machine-Learning-Based Approach for Worm Detection}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19061468}, pages = {14}, year = {2019}, abstract = {The nematode Caenorhabditis elegans (C. elegans) is often used as an alternative animal model due to several advantages such as morphological changes that can be seen directly under a microscope. Limitations of the model include the usage of expensive and cumbersome microscopes, and restrictions of the comprehensive use of C. elegans for toxicological trials. With the general applicability of the detection of C. elegans from microscope images via machine learning, as well as of smartphone-based microscopes, this article investigates the suitability of smartphone-based microscopy to detect C. elegans in a complete Petri dish. Thereby, the article introduces a smartphone-based microscope (including optics, lighting, and housing) for monitoring C. elegans and the corresponding classification via a trained Histogram of Oriented Gradients (HOG) feature-based Support Vector Machine for the automatic detection of C. elegans. Evaluation showed classification sensitivity of 0.90 and specificity of 0.85, and thereby confirms the general practicability of the chosen approach.}, language = {en} } @misc{ChenBornhorstNeelyetal.2018, author = {Chen, Pan and Bornhorst, Julia and Neely, M. Diana and Avila, Daiana Silva}, title = {Mechanisms and Disease Pathogenesis Underlying Metal-Induced Oxidative Stress}, series = {Oxidative Medicine and Cellular Longevity}, journal = {Oxidative Medicine and Cellular Longevity}, publisher = {Hindawi}, address = {London}, issn = {1942-0900}, doi = {10.1155/2018/7612172}, pages = {3}, year = {2018}, language = {en} } @article{KehmJaehnertDeubeletal.2020, author = {Kehm, Richard and J{\"a}hnert, Markus and Deubel, Stefanie and Flore, Tanina and K{\"o}nig, Jeannette and Jung, Tobias and Stadion, Mandy and Jonas, Wenke and Sch{\"u}rmann, Annette and Grune, Tilman and H{\"o}hn, Annika}, title = {Redox homeostasis and cell cycle activation mediate beta-cell mass expansion in aged, diabetes-prone mice under metabolic stress conditions: role of thioredoxin-interacting protein (TXNIP)}, series = {Redox Biology}, volume = {37}, journal = {Redox Biology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-2317}, doi = {10.1016/j.redox.2020.101748}, pages = {11}, year = {2020}, abstract = {Overnutrition contributes to insulin resistance, obesity and metabolic stress, initiating a loss of functional beta-cells and diabetes development. Whether these damaging effects are amplified in advanced age is barely investigated. Therefore, New Zealand Obese (NZO) mice, a well-established model for the investigation of human obesity-associated type 2 diabetes, were fed a metabolically challenging diet with a high-fat, carbohydrate restricted period followed by a carbohydrate intervention in young as well as advanced age. Interestingly, while young NZO mice developed massive hyperglycemia in response to carbohydrate feeding, leading to beta-cell dysfunction and cell death, aged counterparts compensated the increased insulin demand by persistent beta-cell function and beta-cell mass expansion. Beta-cell loss in young NZO islets was linked to increased expression of thioredoxin-interacting protein (TXNIP), presumably initiating an apoptosis-signaling cascade via caspase-3 activation. In contrast, islets of aged NZOs exhibited a sustained redox balance without changes in TXNIP expression, associated with higher proliferative potential by cell cycle activation. These findings support the relevance of a maintained proliferative potential and redox homeostasis for preserving islet functionality under metabolic stress, with the peculiarity that this adaptive response emerged with advanced age in diabetesprone NZO mice.}, language = {en} } @article{HoffmannOttRaupbachetal.2022, author = {Hoffmann, Holger and Ott, Christiane and Raupbach, Jana and Andernach, Lars and Renz, Matthias and Grune, Tilman and Hanschen, Franziska S.}, title = {Assessing bioavailability and bioactivity of 4-Hydroxythiazolidine-2-Thiones, newly discovered glucosinolate degradation products formed during domestic boiling of cabbage}, series = {Frontiers in nutrition}, volume = {9}, journal = {Frontiers in nutrition}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-861X}, doi = {10.3389/fnut.2022.941286}, pages = {13}, year = {2022}, abstract = {Glucosinolates are plant secondary metabolites found in cruciferous vegetables (Brassicaceae) that are valued for their potential health benefits. Frequently consumed representatives of these vegetables, for example, are white or red cabbage, which are typically boiled before consumption. Recently, 3-alk(en)yl-4-hydroxythiazolidine-2-thiones were identified as a class of thermal glucosinolate degradation products that are formed during the boiling of cabbage. Since these newly discovered compounds are frequently consumed, this raises questions about their potential uptake and their possible bioactive functions. Therefore, 3-allyl-4-hydroxythiazolidine-2-thione (allyl HTT) and 4-hydroxy-3-(4-(methylsulfinyl) butyl)thiazolidine-2-thione (4-MSOB HTT) as degradation products of the respective glucosinolates sinigrin and glucoraphanin were investigated. After consumption of boiled red cabbage broth, recoveries of consumed amounts of the degradation products in urine collected for 24 h were 18 +/- 5\% for allyl HTT and 21 +/- 4\% for 4-MSOB HTT (mean +/- SD, n = 3). To investigate the stability of the degradation products during uptake and to elucidate the uptake mechanism, both an in vitro stomach and an in vitro intestinal model were applied. The results indicate that the uptake of allyl HTT and 4-MSOB HTT occurs by passive diffusion. Both compounds show no acute cell toxicity, no antioxidant potential, and no change in NAD(P)H dehydrogenase quinone 1 (NQO1) activity up to 100 mu M. However, inhibition of glycogen synthase kinases-3 (GSK-3) in the range of 20\% for allyl HTT for the isoform GSK-3 beta and 29\% for 4-MSOB HTT for the isoform GSK-3 alpha at a concentration of 100 mu M was found. Neither health-promoting nor toxic effects of 3-alk(en)yl-4-hydroxythiazolidine-2-thiones were found in the four tested assays carried out in this study, which contrasts with the properties of other glucosinolate degradation products, such as isothiocyanates.}, language = {en} } @article{MaharjanSinghHanifetal.2022, author = {Maharjan, Romi Singh and Singh, Ajay Vikram and Hanif, Javaria and Rosenkranz, Daniel and Haidar, Rashad and Shelar, Amruta and Singh, Shubham Pratap and Dey, Aditya and Patil, Rajendra and Zamboni, Paolo and Laux, Peter and Luch, Andreas}, title = {Investigation of the associations between a nanomaterial's microrheology and toxicology}, series = {ACS omega / American Chemical Society}, volume = {7}, journal = {ACS omega / American Chemical Society}, number = {16}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {2470-1343}, doi = {10.1021/acsomega.2c00472}, pages = {13985 -- 13997}, year = {2022}, abstract = {With the advent of Nanotechnology, the use of nanomaterials in consumer products is increasing on a daily basis, due to which a deep understanding and proper investigation regarding their safety and risk assessment should be a major priority. To date, there is no investigation regarding the microrheological properties of nanomaterials (NMs) in biological media. In our study, we utilized in silico models to select the suitable NMs based on their physicochemical properties such as solubility and lipophilicity. Then, we established a new method based on dynamic light scattering (DLS) microrheology to get the mean square displacement (MSD) and viscoelastic property of two model NMs that are dendrimers and cerium dioxide nanoparticles in Dulbecco's Modified Eagle Medium (DMEM) complete media at three different concentrations for both NMs. Subsequently, we established the cytotoxicological profiling using water-soluble tetrazolium salt-1 (WST-1) and a reactive oxygen species (ROS) assay. To take one step forward, we further looked into the tight junction properties of the cells using immunostaining with Zonula occluden-1 (ZO-1) antibodies and found that the tight junction function or transepithelial resistance (TEER) was affected in response to the microrheology and cytotoxicity. The quantitative polymerase chain reaction (q-PCR) results in the gene expression of ZO-1 after the 24 h treatment with NPs further validates the findings of immunostaining results. This new method that we established will be a reference point for other NM studies which are used in our day-to-day consumer products.}, language = {en} } @article{CastroFernandoReegetal.2019, author = {Castro, Jose Pedro and Fernando, Raquel and Reeg, Sandra and Meinl, Walter and Almeida, Henrique and Grune, Tilman}, title = {Non-enzymatic cleavage of Hsp90 by oxidative stress leads to actin aggregate formation}, series = {Redox Biology}, volume = {21}, journal = {Redox Biology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-2317}, doi = {10.1016/j.redox.2019.101108}, pages = {10}, year = {2019}, abstract = {Aging is accompanied by the accumulation of oxidized proteins. To remove them, cells employ the proteasomal and autophagy-lysosomal systems; however, if the clearance rate is inferior to its formation, protein aggregates form as a hallmark of proteostasis loss. In cells, during stress conditions, actin aggregates accumulate leading to impaired proliferation and reduced proteasomal activity, as observed in cellular senescence. The heat shock protein 90 (Hsp90) is a molecular chaperone that binds and protects the proteasome from oxidative inactivation. We hypothesized that in oxidative stress conditions a malfunction of Hsp90 occurs resulting in the aforementioned protein aggregates. Here, we demonstrate that upon oxidative stress Hsp90 loses its function in a highly specific non-enzymatic iron-catalyzed oxidation event and its breakdown product, a cleaved form of Hsp90 (Hsp90cl), acquires a new function in mediating the accumulation of actin aggregates. Moreover, the prevention of Hsp90 cleavage reduces oxidized actin accumulation, whereas transfection of the cleaved form of Hsp90 leads to an enhanced accumulation of oxidized actin. This indicates a clear role of the Hsp90cl in the aggregation of oxidized proteins.}, language = {en} } @article{KehmRueckriemenWeberetal.2019, author = {Kehm, Richard and R{\"u}ckriemen, Jana and Weber, Daniela and Deubel, Stefanie and Grune, Tilman and H{\"o}hn, Annika}, title = {Endogenous advanced glycation end products in pancreatic islets after short-term carbohydrate intervention in obese, diabetes-prone mice}, series = {Nutrition \& Diabetes}, volume = {9}, journal = {Nutrition \& Diabetes}, publisher = {Nature Publ. Group}, address = {London}, issn = {2044-4052}, doi = {10.1038/s41387-019-0077-x}, pages = {5}, year = {2019}, abstract = {Diet-induced hyperglycemia is described as one major contributor to the formation of advanced glycation end products (AGEs) under inflammatory conditions, crucial in type 2 diabetes progression. Previous studies have indicated high postprandial plasma AGE-levels in diabetic patients and after long-term carbohydrate feeding in animal models. Pancreatic islets play a key role in glucose metabolism; thus, their susceptibility to glycation reactions due to high amounts of dietary carbohydrates is of special interest. Therefore, diabetes-prone New Zealand Obese (NZO) mice received either a carbohydrate-free, high-fat diet (CFD) for 11 weeks or were additionally fed with a carbohydrate-rich diet (CRD) for 7 days. In the CRD group, hyperglycemia and hyperinsulinemia were induced accompanied by increasing plasma 3-nitrotyrosine (3-NT) levels, higher amounts of 3-NT and inducible nitric oxide synthase (iNOS) within pancreatic islets. Furthermore, N-epsilon-carboxymethyllysine (CML) was increased in the plasma of CRD-fed NZO mice and substantially higher amounts of arg-pyrimidine, pentosidine and the receptor for advanced glycation end products (RAGE) were observed in pancreatic islets. These findings indicate that a short-term intervention with carbohydrates is sufficient to form endogenous AGEs in plasma and pancreatic islets of NZO mice under hyperglycemic and inflammatory conditions.}, language = {en} } @article{MenzelLongreeAbrahametal.2022, author = {Menzel, Juliane and Longree, Alessa and Abraham, Klaus and Schulze, Matthias Bernd and Weikert, Cornelia}, title = {Dietary and plasma phospholipid profiles in vegans and omnivores-results from the RBVD study}, series = {Nutrients}, volume = {14}, journal = {Nutrients}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu14142900}, pages = {13}, year = {2022}, abstract = {Over the last few years, the vegan diet has become increasingly popular in Germany. It has been proposed that this diet is generally lower in fat, but less is known about the impact on fatty acid (FA) profiles. Therefore, the cross-sectional "Risks and Benefits of a Vegan Diet" (RBVD) study (n = 72) was used to investigate dietary FA intake as well as plasma phospholipid FA in vegans (n = 36) compared to omnivores (n = 36). Vegans had a significantly lower dietary intake of total fat (median 86 g/day, IQR 64-111) in comparison to omnivores (median 104 g/day, IQR 88-143, p = 0.004). Further, vegans had a lower intake of saturated fatty acids (SFA) (p < 0.0001) and monounsaturated fatty acids (MUFA) (p = 0.001) compared to omnivores. Vegans had a higher intake in total polyunsaturated fatty acids (PUFA), omega-3 and omega-6 PUFA compared to omnivores, but without statistical significance after Bonferroni correction. According to plasma phospholipid profiles, relatively lower proportions of SFA (p < 0.0001), total trans fatty acids (TFA) (p = 0.0004) and omega-3-FA (p < 0.0001), but higher proportions of omega-6-FA (p < 0.0001) were observed in vegans. With the exception of omega-3 PUFA, a vegan diet is associated with a more favorable dietary fat intake and more favorable plasma FA profiles and therefore may reduce cardiovascular risk.}, language = {en} } @article{KoelmanPivovarovaRamichPfeifferetal.2019, author = {Koelman, Liselot A. and Pivovarova-Ramich, Olga and Pfeiffer, Andreas F. H. and Grune, Tilman and Aleksandrova, Krasimira}, title = {Cytokines for evaluation of chronic inflammatory status in ageing research}, series = {Immunity \& Ageing}, volume = {16}, journal = {Immunity \& Ageing}, publisher = {BMC}, address = {London}, issn = {1742-4933}, doi = {10.1186/s12979-019-0151-1}, pages = {12}, year = {2019}, abstract = {Background: There is a growing interest in the role of inflammageing for chronic disease development. Cytokines are potent soluble immune mediators that can be used as target biomarkers of inflammageing; however, their measurement in human samples has been challenging. This study aimed to assess the reliability of a pro- and anti-inflammatory cytokine panel in a sample of healthy people measured with a novel electrochemiluminescent multiplex immunoassay platform (Meso Scale Discovery, MSD), and to characterize their associations with metabolic and inflammatory phenotypes.}, language = {en} } @article{WeitkunatBishopWittmuessetal.2021, author = {Weitkunat, Karolin and Bishop, Christopher Allen and Wittm{\"u}ss, Maria and Machate, Tina and Schifelbein, Tina and Schulze, Matthias Bernd and Klaus, Susanne}, title = {Effect of microbial status on hepatic odd-chain fatty acids is diet-dependent}, series = {Nutrients / Molecular Diversity Preservation International (MDPI)}, volume = {13}, journal = {Nutrients / Molecular Diversity Preservation International (MDPI)}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu13051546}, pages = {15}, year = {2021}, abstract = {Odd-chain fatty acids (OCFA) are inversely associated with type-2-diabetes in epidemiological studies. They are considered as a biomarker for dairy intake because fermentation in ruminants yields high amounts of propionate, which is used as the primer for lipogenesis. Recently, we demonstrated endogenous OCFA synthesis from propionate in humans and mice, but how this is affected by microbial colonization is still unexplored. Here, we investigated the effect of increasing microbiota complexity on hepatic lipid metabolism and OCFA levels in different dietary settings. Germ-free (GF), gnotobiotic (SIH, simplified human microbiota) or conventional (CONV) C3H/HeOuJ-mice were fed a CHOW or high-fat diet with inulin (HFI) to induce microbial fermentation. We found that hepatic lipogenesis was increased with increasing microbiota complexity, independently of diet. In contrast, OCFA formation was affected by diet as well as microbiota. On CHOW, hepatic OCFA and intestinal gluconeogenesis decreased with increasing microbiota complexity (GF > SIH > CONV), while cecal propionate showed a negative correlation with hepatic OCFA. On HFI, OCFA levels were highest in SIH and positively correlated with cecal propionate. The propionate content in the CHOW diet was 10 times higher than that of HFI. We conclude that bacterial propionate production affects hepatic OCFA formation, unless this effect is masked by dietary propionate intake.}, language = {en} } @article{BirukovPolemitiJaegeretal.2022, author = {Birukov, Anna and Polemiti, Elli and Jaeger, Susanne and Stefan, Norbert and Schulze, Matthias Bernd}, title = {Fetuin-A and risk of diabetes-related vascular complications}, series = {Cardiovascular diabetology}, volume = {21}, journal = {Cardiovascular diabetology}, number = {1}, publisher = {BMC}, address = {London}, issn = {1475-2840}, doi = {10.1186/s12933-021-01439-8}, pages = {11}, year = {2022}, abstract = {Background Fetuin-A is a hepatokine which has the capacity to prevent vascular calcification. Moreover, it is linked to the induction of metabolic dysfunction, insulin resistance and associated with increased risk of diabetes. It has not been clarified whether fetuin-A associates with risk of vascular, specifically microvascular, complications in patients with diabetes. We aimed to investigate whether pre-diagnostic plasma fetuin-A is associated with risk of complications once diabetes develops. Methods Participants with incident type 2 diabetes and free of micro- and macrovascular disease from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort (n = 587) were followed for microvascular and macrovascular complications (n = 203 and n = 60, respectively, median follow-up: 13 years). Plasma fetuin-A was measured approximately 4 years prior to diabetes diagnosis. Prospective associations between baseline fetuin-A and risk of complications were assessed with Cox regression. Results In multivariable models, fetuin-A was linearly inversely associated with incident total and microvascular complications, hazard ratio (HR, 95\% CI) per standard deviation (SD) increase: 0.86 (0.74; 0.99) for total, 0.84 (0.71; 0.98) for microvascular and 0.92 (0.68; 1.24) for macrovascular complications. After additional adjustment for cardiometabolic plasma biomarkers, including triglycerides and high-density lipoprotein, the associations were slightly attenuated: 0.88 (0.75; 1.02) for total, 0.85 (0.72; 1.01) for microvascular and 0.95 (0.67; 1.34) for macrovascular complications. No interaction by sex could be observed (p > 0.10 for all endpoints). Conclusions Our data show that lower plasma fetuin-A levels measured prior to the diagnosis of diabetes may be etiologically implicated in the development of diabetes-associated microvascular disease.}, language = {en} } @article{SchroeterNeugartSchreineretal.2019, author = {Schr{\"o}ter, David and Neugart, Susanne and Schreiner, Monika and Grune, Tilman and Rohn, Sascha and Ott, Christiane}, title = {Amaranth's 2-Caffeoylisocitric Acid—An Anti-Inflammatory Caffeic Acid Derivative That Impairs NF-κB Signaling in LPS-Challenged RAW 264.7 Macrophages}, series = {Nutrients}, volume = {11}, journal = {Nutrients}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu11030571}, pages = {14}, year = {2019}, abstract = {For centuries, Amaranthus sp. were used as food, ornamentals, and medication. Molecular mechanisms, explaining the health beneficial properties of amaranth, are not yet understood, but have been attributed to secondary metabolites, such as phenolic compounds. One of the most abundant phenolic compounds in amaranth leaves is 2-caffeoylisocitric acid (C-IA) and regarding food occurrence, C-IA is exclusively found in various amaranth species. In the present study, the anti-inflammatory activity of C-IA, chlorogenic acid, and caffeic acid in LPS-challenged macrophages (RAW 264.7) has been investigated and cellular contents of the caffeic acid derivatives (CADs) were quantified in the cells and media. The CADs were quantified in the cell lysates in nanomolar concentrations, indicating a cellular uptake. Treatment of LPS-challenged RAW 264.7 cells with 10 µM of CADs counteracted the LPS effects and led to significantly lower mRNA and protein levels of inducible nitric oxide synthase, tumor necrosis factor alpha, and interleukin 6, by directly decreasing the translocation of the nuclear factor κB/Rel-like containing protein 65 into the nucleus. This work provides new insights into the molecular mechanisms that attribute to amaranth's anti-inflammatory properties and highlights C-IA's potential as a health-beneficial compound for future research.}, language = {en} } @article{EichelmannSchulzeWittenbecheretal.2019, author = {Eichelmann, Fabian and Schulze, Matthias Bernd and Wittenbecher, Clemens and Menzel, Juliane and Weikert, Cornelia and di Giuseppe, Romina and Biemann, Ronald and Isermann, Berend and Fritsche, Andreas and Boeing, Heiner and Aleksandrova, Krasimira}, title = {Association of Chemerin Plasma Concentration With Risk of Colorectal Cancer}, series = {JAMA network open}, volume = {2}, journal = {JAMA network open}, number = {3}, publisher = {American Veterinary Medical Association}, address = {Chicago}, issn = {2574-3805}, doi = {10.1001/jamanetworkopen.2019.0896}, pages = {14}, year = {2019}, abstract = {IMPORTANCE Inflammatory processes have been suggested to have an important role in colorectal cancer (CRC) etiology. Chemerin is a recently discovered inflammatory biomarker thought to exert chemotactic, adipogenic, and angiogenic functions. However, its potential link with CRC has not been sufficiently explored. OBJECTIVE To evaluate the prospective association of circulating plasma chemerin concentrations with incident CRC. DESIGN, SETTING, AND PARTICIPANTS Prospective case-cohort study based on 27 548 initially healthy participants from the European Prospective Investigation Into Cancer and Nutrition (EPIC)-Potsdam cohort who were followed for up to 16 years. Baseline study information and samples were collected between August 23, 1994, and September 25, 1998. Recruitment was according to random registry sampling from the geographical area of Potsdam, Germany, and surrounding municipalities. The last date of study follow-up was May 10, 2010. Statistical analysis was conducted in 2018. MAIN OUTCOMES AND MEASURES Incident CRC, colon cancer, and rectal cancer. Baseline chemerin plasma concentrations were measured by enzyme-linked immunosorbent assay. CONCLUSIONS AND RELEVANCE This study found that the association between chemerin concentration and the risk of incident CRC was linear and independent of established CRC risk factors. Further studies are warranted to evaluate chemerin as a novel immune-inflammatory agent in colorectal carcinogenesis.}, language = {en} } @article{GalbeteKroegerJannaschetal.2018, author = {Galbete, Cecilia and Kr{\"o}ger, Janine and Jannasch, Franziska and Iqbal, Khalid and Schwingshackl, Lukas and Schwedhelm, Carolina and Weikert, Cornelia and Boeing, Heiner and Schulze, Matthias Bernd}, title = {Nordic diet, Mediterranean diet, and the risk of chronic diseases}, series = {BMC Medicine}, volume = {16}, journal = {BMC Medicine}, publisher = {BMC}, address = {London}, issn = {1741-7015}, doi = {10.1186/s12916-018-1082-y}, pages = {13}, year = {2018}, abstract = {Background: The Mediterranean Diet (MedDiet) has been acknowledged as a healthy diet. However, its relation with risk of major chronic diseases in non-Mediterranean countries is inconclusive. The Nordic diet is proposed as an alternative across Northern Europe, although its associations with the risk of chronic diseases remain controversial. We aimed to investigate the association between the Nordic diet and the MedDiet with the risk of chronic disease (type 2 diabetes (T2D), myocardial infarction (MI), stroke, and cancer) in the EPIC-Potsdam cohort. Methods: The EPIC-Potsdam cohort recruited 27,548 participants between 1994 and 1998. After exclusion of prevalent cases, we evaluated baseline adherence to a score reflecting the Nordic diet and two MedDiet scores (tMDS, reflecting the traditional MedDiet score, and the MedPyr score, reflecting the MedDiet Pyramid). Cox regression models were applied to examine the association between the diet scores and the incidence of major chronic diseases. Results: During a follow-up of 10.6 years, 1376 cases of T2D, 312 of MI, 321 of stroke, and 1618 of cancer were identified. The Nordic diet showed a statistically non-significant inverse association with incidence of MI in the overall population and of stroke in men. Adherence to the MedDiet was associated with lower incidence of T2D (HR per 1 SD 0.93, 95\% CI 0.88-0.98 for the tMDS score and 0.92, 0.87-0.97 for the MedPyr score). In women, the MedPyr score was also inversely associated with MI. No association was observed for any of the scores with cancer. Conclusions: In the EPIC-Potsdam cohort, the Nordic diet showed a possible beneficial effect on MI in the overall population and for stroke in men, while both scores reflecting the MedDiet conferred lower risk of T2D in the overall population and of MI in women.}, language = {en} }