@article{MieleGuillRamosJilibertoetal.2019, author = {Miele, Vincent and Guill, Christian and Ramos-Jiliberto, Rodrigo and K{\´e}fi, Sonia}, title = {Non-trophic interactions strengthen the diversity-functioning relationship in an ecological bioenergetic network model}, series = {PLoS Computational Biology : a new community journal}, volume = {15}, journal = {PLoS Computational Biology : a new community journal}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1553-7358}, doi = {10.1371/journal.pcbi.1007269}, pages = {20}, year = {2019}, abstract = {Ecological communities are undeniably diverse, both in terms of the species that compose them as well as the type of interactions that link species to each other. Despite this long recognition of the coexistence of multiple interaction types in nature, little is known about the consequences of this diversity for community functioning. In the ongoing context of global change and increasing species extinction rates, it seems crucial to improve our understanding of the drivers of the relationship between species diversity and ecosystem functioning. Here, using a multispecies dynamical model of ecological communities including various interaction types (e.g. competition for space, predator interference, recruitment facilitation in addition to feeding), we studied the role of the presence and the intensity of these interactions for species diversity, community functioning (biomass and production) and the relationship between diversity and functioning. Taken jointly, the diverse interactions have significant effects on species diversity, whose amplitude and sign depend on the type of interactions involved and their relative abundance. They however consistently increase the slope of the relationship between diversity and functioning, suggesting that species losses might have stronger effects on community functioning than expected when ignoring the diversity of interaction types and focusing on feeding interactions only.}, language = {en} } @article{RieckGeigerMunkertetal.2019, author = {Rieck, Christoph Paul Kurt and Geiger, Daniel and Munkert, Jennifer and Messerschmidt, Katrin and Petersen, Jan and Strasser, Juliane and Meitinger, Nadine and Kreis, Wolfgang}, title = {Biosynthetic approach to combine the first steps of cardenolide formation in Saccharomyces cerevisiae}, series = {Microbiologyopen}, volume = {8}, journal = {Microbiologyopen}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-8827}, doi = {10.1002/mbo3.925}, pages = {11}, year = {2019}, abstract = {A yeast expression plasmid was constructed containing a cardenolide biosynthetic module, referred to as CARD II, using the AssemblX toolkit, which enables the assembly of large DNA constructs. The genes cloned into the vector were (a) a Δ5-3β-hydroxysteroid dehydrogenase gene from Digitalis lanata, (b) a steroid Δ5-isomerase gene from Comamonas testosteronii, (c) a mutated steroid-5β-reductase gene from Arabidopsis thaliana, and (d) a steroid 21-hydroxylase gene from Mus musculus. A second plasmid bearing an ADR/ADX fusion gene from Bos taurus was also constructed. A Saccharomyces cerevisiae strain bearing these two plasmids was generated. This strain, termed "CARD II yeast", was capable of producing 5β-pregnane-3β,21-diol-20-one, a central intermediate in 5β-cardenolide biosynthesis, starting from pregnenolone which was added to the culture medium. Using this approach, five consecutive steps in cardenolide biosynthesis were realized in baker's yeast.}, language = {en} } @article{KnudsenHeinoldDahlkeetal.2018, author = {Knudsen, Erlend Moster and Heinold, Bernd and Dahlke, Sandro and Bozem, Heiko and Crewell, Susanne and Gorodetskaya, Irina V. and Heygster, Georg and Kunkel, Daniel and Maturilli, Marion and Mech, Mario and Viceto, Carolina and Rinke, Annette and Schmithusen, Holger and Ehrlich, Andre and Macke, Andreas and L{\"u}pkes, Christof and Wendisch, Manfred}, title = {Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017}, series = {Atmospheric chemistry and physics}, volume = {18}, journal = {Atmospheric chemistry and physics}, number = {24}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1680-7316}, doi = {10.5194/acp-18-17995-2018}, pages = {17995 -- 18022}, year = {2018}, abstract = {The two concerted field campaigns, Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary level Sea ice, Cloud and AerosoL (PASCAL), took place near Svalbard from 23 May to 26 June 2017. They were focused on studying Arctic mixed-phase clouds and involved observations from two airplanes (ACLOUD), an icebreaker (PASCAL) and a tethered balloon, as well as ground-based stations. Here, we present the synoptic development during the 35-day period of the campaigns, using near-surface and upper-air meteorological observations, as well as operational satellite, analysis, and reanalysis data. Over the campaign period, short-term synoptic variability was substantial, dominating over the seasonal cycle. During the first campaign week, cold and dry Arctic air from the north persisted, with a distinct but seasonally unusual cold air outbreak. Cloudy conditions with mostly low-level clouds prevailed. The subsequent 2 weeks were characterized by warm and moist maritime air from the south and east, which included two events of warm air advection. These synoptical disturbances caused lower cloud cover fractions and higher-reaching cloud systems. In the final 2 weeks, adiabatically warmed air from the west dominated, with cloud properties strongly varying within the range of the two other periods. Results presented here provide synoptic information needed to analyze and interpret data of upcoming studies from ACLOUD/PASCAL, while also offering unprecedented measurements in a sparsely observed region.}, language = {en} } @article{ShcherbakovZhuangZoelleretal.2019, author = {Shcherbakov, Robert and Zhuang, Jiancang and Z{\"o}ller, Gert and Ogata, Yosihiko}, title = {Forecasting the magnitude of the largest expected earthquake}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-11958-4}, pages = {11}, year = {2019}, abstract = {The majority of earthquakes occur unexpectedly and can trigger subsequent sequences of events that can culminate in more powerful earthquakes. This self-exciting nature of seismicity generates complex clustering of earthquakes in space and time. Therefore, the problem of constraining the magnitude of the largest expected earthquake during a future time interval is of critical importance in mitigating earthquake hazard. We address this problem by developing a methodology to compute the probabilities for such extreme earthquakes to be above certain magnitudes. We combine the Bayesian methods with the extreme value theory and assume that the occurrence of earthquakes can be described by the Epidemic Type Aftershock Sequence process. We analyze in detail the application of this methodology to the 2016 Kumamoto, Japan, earthquake sequence. We are able to estimate retrospectively the probabilities of having large subsequent earthquakes during several stages of the evolution of this sequence.}, language = {en} } @article{SchiroColangeliMueller2019, author = {Schiro, Gabriele and Colangeli, Pierluigi and M{\"u}ller, Marina E. H.}, title = {A Metabarcoding Analysis of the Mycobiome of Wheat Ears Across a Topographically Heterogeneous Field}, series = {Frontiers in microbiology}, volume = {10}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2019.02095}, pages = {12}, year = {2019}, language = {en} } @article{BielcikAguilarTriguerosLakovicetal.2019, author = {Bielcik, Milos and Aguilar-Trigueros, Carlos A. and Lakovic, Milica and Jeltsch, Florian and Rillig, Matthias C.}, title = {The role of active movement in fungal ecology and community assembly}, series = {Movement Ecology}, volume = {7}, journal = {Movement Ecology}, number = {1}, publisher = {BMC}, address = {London}, issn = {2051-3933}, doi = {10.1186/s40462-019-0180-6}, pages = {12}, year = {2019}, abstract = {Movement ecology aims to provide common terminology and an integrative framework of movement research across all groups of organisms. Yet such work has focused on unitary organisms so far, and thus the important group of filamentous fungi has not been considered in this context. With the exception of spore dispersal, movement in filamentous fungi has not been integrated into the movement ecology field. At the same time, the field of fungal ecology has been advancing research on topics like informed growth, mycelial translocations, or fungal highways using its own terminology and frameworks, overlooking the theoretical developments within movement ecology. We provide a conceptual and terminological framework for interdisciplinary collaboration between these two disciplines, and show how both can benefit from closer links: We show how placing the knowledge from fungal biology and ecology into the framework of movement ecology can inspire both theoretical and empirical developments, eventually leading towards a better understanding of fungal ecology and community assembly. Conversely, by a greater focus on movement specificities of filamentous fungi, movement ecology stands to benefit from the challenge to evolve its concepts and terminology towards even greater universality. We show how our concept can be applied for other modular organisms (such as clonal plants and slime molds), and how this can lead towards comparative studies with the relationship between organismal movement and ecosystems in the focus.}, language = {en} } @article{Schwarz2019, author = {Schwarz, Anja}, title = {Melancholia}, series = {Cultural studies review}, volume = {25}, journal = {Cultural studies review}, number = {2}, publisher = {Melbourne Univ. Press}, address = {Sydney}, issn = {1837-8692}, doi = {10.5130/csr.v25i2.6918}, pages = {259 -- 261}, year = {2019}, language = {en} } @article{ZiesemerHuettelBalderjahn2019, author = {Ziesemer, Florence and H{\"u}ttel, Alexandra and Balderjahn, Ingo}, title = {Anti-Consumption}, series = {Sustainability}, volume = {11}, journal = {Sustainability}, number = {23}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su11236663}, pages = {16}, year = {2019}, abstract = {Transcending the conventional debate around efficiency in sustainable consumption, anti-consumption patterns leading to decreased levels of material consumption have been gaining importance. Change agents are crucial for the promotion of such patterns, so there may be lessons for governance interventions that can be learnt from the every-day experiences of those who actively implement and promote sustainability in the field of anti-consumption. Eighteen social innovation pioneers, who engage in and diffuse practices of voluntary simplicity and collaborative consumption as sustainable options of anti-consumption share their knowledge and personal insights in expert interviews for this research. Our qualitative content analysis reveals drivers, barriers, and governance strategies to strengthen anti-consumption patterns, which are negotiated between the market, the state, and civil society. Recommendations derived from the interviews concern entrepreneurship, municipal infrastructures in support of local grassroots projects, regulative policy measures, more positive communication to strengthen the visibility of initiatives and emphasize individual benefits, establishing a sense of community, anti-consumer activism, and education. We argue for complementary action between top-down strategies, bottom-up initiatives, corporate activities, and consumer behavior. The results are valuable to researchers, activists, marketers, and policymakers who seek to enhance their understanding of materially reduced consumption patterns based on the real-life experiences of active pioneers in the field.}, language = {en} } @article{OzcelikayKurbanogluZhangetal.2019, author = {Ozcelikay, Goksu and Kurbanoglu, Sevinc and Zhang, Xiaorong and S{\"o}z, {\c{C}}ağla Kosak and Wollenberger, Ulla and Ozkan, Sibel A. and Yarman, Aysu and Scheller, Frieder W.}, title = {Electrochemical MIP Sensor for Butyrylcholinesterase}, series = {Polymers}, volume = {11}, journal = {Polymers}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym11121970}, pages = {11}, year = {2019}, abstract = {Molecularly imprinted polymers (MIPs) mimic the binding sites of antibodies by substituting the amino acid-scaffold of proteins by synthetic polymers. In this work, the first MIP for the recognition of the diagnostically relevant enzyme butyrylcholinesterase (BuChE) is presented. The MIP was prepared using electropolymerization of the functional monomer o-phenylenediamine and was deposited as a thin film on a glassy carbon electrode by oxidative potentiodynamic polymerization. Rebinding and removal of the template were detected by cyclic voltammetry using ferricyanide as a redox marker. Furthermore, the enzymatic activity of BuChE rebound to the MIP was measured via the anodic oxidation of thiocholine, the reaction product of butyrylthiocholine. The response was linear between 50 pM and 2 nM concentrations of BuChE with a detection limit of 14.7 pM. In addition to the high sensitivity for BuChE, the sensor responded towards pseudo-irreversible inhibitors in the lower mM range.}, language = {en} } @article{NivenAbelSchlegeletal.2019, author = {Niven, Robert K. and Abel, Markus and Schlegel, Michael and Waldrip, Steven H.}, title = {Maximum Entropy Analysis of Flow Networks: Theoretical Foundation and Applications}, series = {Entropy}, volume = {21}, journal = {Entropy}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1099-4300}, doi = {10.3390/e21080776}, pages = {776}, year = {2019}, abstract = {The concept of a "flow network"-a set of nodes and links which carries one or more flows-unites many different disciplines, including pipe flow, fluid flow, electrical, chemical reaction, ecological, epidemiological, neurological, communications, transportation, financial, economic and human social networks. This Feature Paper presents a generalized maximum entropy framework to infer the state of a flow network, including its flow rates and other properties, in probabilistic form. In this method, the network uncertainty is represented by a joint probability function over its unknowns, subject to all that is known. This gives a relative entropy function which is maximized, subject to the constraints, to determine the most probable or most representative state of the network. The constraints can include "observable" constraints on various parameters, "physical" constraints such as conservation laws and frictional properties, and "graphical" constraints arising from uncertainty in the network structure itself. Since the method is probabilistic, it enables the prediction of network properties when there is insufficient information to obtain a deterministic solution. The derived framework can incorporate nonlinear constraints or nonlinear interdependencies between variables, at the cost of requiring numerical solution. The theoretical foundations of the method are first presented, followed by its application to a variety of flow networks.}, language = {en} }