@article{WeyrichJeschekSchrapersetal.2018, author = {Weyrich, Alexandra and Jeschek, Marie and Schrapers, Katharina T. and Lenz, Dorina and Chung, Tzu Hung and Ruebensam, Kathrin and Yasar, Sermin and Schneemann, Markus and Ortmann, Sylvia and Jewgenow, Katarina and Fickel, J{\"o}rns}, title = {Diet changes alter paternally inherited epigenetic pattern in male Wild guinea pigs}, series = {Environmental Epigenetics}, volume = {4}, journal = {Environmental Epigenetics}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2058-5888}, doi = {10.1093/eep/dvy011}, pages = {12}, year = {2018}, abstract = {Epigenetic modifications, of which DNA methylation is the most stable, are a mechanism conveying environmental information to subsequent generations via parental germ lines. The paternal contribution to adaptive processes in the offspring might be crucial, but has been widely neglected in comparison to the maternal one. To address the paternal impact on the offspring's adaptability to changes in diet composition, we investigated if low protein diet (LPD) in F0 males caused epigenetic alterations in their subsequently sired sons. We therefore fed F0 male Wild guinea pigs with a diet lowered in protein content (LPD) and investigated DNA methylation in sons sired before and after their father's LPD treatment in both, liver and testis tissues. Our results point to a 'heritable epigenetic response' of the sons to the fathers' dietary change. Because we detected methylation changes also in the testis tissue, they are likely to be transmitted to the F2 generation. Gene-network analyses of differentially methylated genes in liver identified main metabolic pathways indicating a metabolic reprogramming ('metabolic shift'). Epigenetic mechanisms, allowing an immediate and inherited adaptation may thus be important for the survival of species in the context of a persistently changing environment, such as climate change.}, language = {en} } @article{PremierFickelHeurichetal.2020, author = {Premier, Joseph and Fickel, J{\"o}rns and Heurich, Marco and Kramer-Schadt, Stephanie}, title = {The boon and bane of boldness}, series = {Movement Ecology}, volume = {8}, journal = {Movement Ecology}, number = {1}, publisher = {BioMed Central}, address = {London}, issn = {2051-3933}, doi = {10.1186/s40462-020-00204-y}, pages = {1 -- 17}, year = {2020}, abstract = {Background: Many felid species are of high conservation concern, and with increasing human disturbance the situation is worsening. Small isolated populations are at risk of genetic impoverishment decreasing within-species biodiversity. Movement is known to be a key behavioural trait that shapes both demographic and genetic dynamics and affects population survival. However, we have limited knowledge on how different manifestations of movement behaviour translate to population processes. In this study, we aimed to 1) understand the potential effects of movement behaviour on the genetic diversity of small felid populations in heterogeneous landscapes, while 2) presenting a simulation tool that can help inform conservation practitioners following, or considering, population management actions targeting the risk of genetic impoverishment. Methods: We developed a spatially explicit individual-based population model including neutral genetic markers for felids and applied this to the example of Eurasian lynx. Using a neutral landscape approach, we simulated reintroductions into a three-patch system, comprising two breeding patches separated by a larger patch of differing landscape heterogeneity, and tested for the effects of various behavioural movement syndromes and founder population sizes. We explored a range of movement syndromes by simulating populations with various movement model parametrisations that range from 'shy' to 'bold' movement behaviour. Results: We find that movement syndromes can lead to a higher loss of genetic diversity and an increase in between population genetic structure for both "bold" and "shy" movement behaviours, depending on landscape conditions, with larger decreases in genetic diversity and larger increases in genetic differentiation associated with bold movement syndromes, where the first colonisers quickly reproduce and subsequently dominate the gene pool. In addition, we underline the fact that a larger founder population can offset the genetic losses associated with subpopulation isolation and gene pool dominance. Conclusions We identified a movement syndrome trade-off for population genetic variation, whereby bold-explorers could be saviours - by connecting populations and promoting panmixia, or sinks - by increasing genetic losses via a 'founder takes all' effect, whereas shy-stayers maintain a more gradual genetic drift due to their more cautious behaviour. Simulations should incorporate movement behaviour to provide better projections of long-term population viability and within-species biodiversity, which includes genetic diversity. Simulations incorporating demographics and genetics have great potential for informing conservation management actions, such as population reintroductions or reinforcements. Here, we present such a simulation tool for solitary felids.}, language = {en} } @article{WeyrichGuerreroAltamiranoYasaretal.2022, author = {Weyrich, Alexandra and Guerrero-Altamirano, Tania P. and Yasar, Selma and Czirjak, G{\´a}bor-{\´A}rp{\´a}d and Wachter, Bettina and Fickel, J{\"o}rns}, title = {First Steps towards the development of epigenetic biomarkers in female cheetahs (Acinonyx jubatus)}, series = {Life : open access journal}, volume = {12}, journal = {Life : open access journal}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2075-1729}, doi = {10.3390/life12060920}, pages = {16}, year = {2022}, abstract = {Free-ranging cheetahs (Acinonyx jubatus) are generally healthy, whereas cheetahs under human care, such as those in zoological gardens, suffer from ill-defined infectious and degenerative pathologies. These differences are only partially explained by husbandry management programs because both groups share low genetic diversity. However, mounting evidence suggests that physiological differences between populations in different environments can be tracked down to differences in epigenetic signatures. Here, we identified differentially methylated regions (DMRs) between free-ranging cheetahs and conspecifics in zoological gardens and prospect putative links to pathways relevant to immunity, energy balance and homeostasis. Comparing epigenomic DNA methylation profiles obtained from peripheral blood mononuclear cells (PBMCs) from eight free-ranging female cheetahs from Namibia and seven female cheetahs living in zoological gardens within Europe, we identified DMRs of which 22 were hypermethylated and 23 hypomethylated. Hypermethylated regions in cheetahs under human care were located in the promoter region of a gene involved in host-pathogen interactions (KLC1) and in an intron of a transcription factor relevant for the development of pancreatic beta-cells, liver, and kidney (GLIS3). The most canonical mechanism of DNA methylation in promoter regions is assumed to repress gene transcription. Taken together, this could indicate that hypermethylation at the promoter region of KLC1 is involved in the reduced immunity in cheetahs under human care. This approach can be generalized to characterize DNA methylation profiles in larger cheetah populations under human care with a more granular longitudinal data collection, which, in the future, could be used to monitor the early onset of pathologies, and ultimately translate into the development of biomarkers with prophylactic and/or therapeutic potential.}, language = {en} }