@misc{MoranBlagroveDruryetal.2019, author = {Moran, Jason and Blagrove, Richard C. and Drury, Benjamin and Fernandes, John F. T. and Paxton, Kevin and Chaabene, Helmi and Ramirez-Campillo, Rodrigo}, title = {Effects of Small-Sided Games vs. Conventional Endurance Training on Endurance Performance in Male Youth Soccer Players: A Meta-Analytical Comparison}, series = {Sports medicine}, volume = {49}, journal = {Sports medicine}, number = {5}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-019-01086-w}, pages = {731 -- 742}, year = {2019}, abstract = {Background Small-sided games have been suggested as a viable alternative to conventional endurance training to enhance endurance performance in youth soccer players. This has important implications for long-term athlete development because it suggests that players can increase aerobic endurance through activities that closely resemble their sport of choice. Data Sources The data sources utilised were Google Scholar, PubMed and Microsoft Academic. Study Eligibility Criteria Studies were eligible for inclusion if interventions were carried out in male soccer players (aged < 18years) and compared the effects of small-sided games and conventional endurance training on aerobic endurance performance. We defined small-sided games as modified [soccer] games played on reduced pitch areas, often using adapted rules and involving a smaller number of players than traditional games. We defined conventional endurance training as continuous running or extensive interval training consisting of work durations>3min. Study Appraisal and Synthesis Methods The inverse-variance random-effects model for meta-analyses was used because it allocates a proportionate weight to trials based on the size of their individual standard errors and facilitates analysis whilst accounting for heterogeneity across studies. Effect sizes were represented by the standardised mean difference and presented alongside 95\% confidence intervals. Results Seven studies were included in this meta-analysis. Both modes of training were effective in increasing endurance performance. Within-mode effect sizes were both of moderate magnitude [small-sided games: 0.82 (95\% confidence interval 0.05, 1.60), Z=2.07 (p=0.04); conventional endurance training: 0.89 (95\% confidence interval 0.06, 1.72), Z=2.10 (p=0.04)]. There were only trivial differences [0.04 (95\% confidence interval -0.36, 0.43), Z=0.18 (p=0.86)] between the effects on aerobic endurance performance of small-sided games and conventional endurance training. Subgroup analyses showed mostly trivial differences between the training methods across key programming variables such as set duration (>= or < 4 min) and recovery period between sets (>= or< 3min). Programmes that were longer than 8 weeks favoured small-sided games [effect size=0.45 (95\% confidence interval -0.12, 1.02), Z=1.54 (p=0.12)], with the opposite being true for conventional endurance training [effect size=-0.33 (95\% confidence interval -0.79, 0.14), Z=1.39 (p=0.16)]. Programmes with more than 4 sets per session favoured small-sided games [effect size=0.53 (95\% confidence interval -0.52, 1.58), Z=0.98 (p=0.33)] with only a trivial difference between those with 4, or fewer, sets [effect size=-0.13 (95\% confidence interval -0.52, 0.26), Z=0.65 (p=0.52)]. Conclusions Small-sided games are as effective as conventional endurance training for increasing aerobic endurance performance in male youth soccer players. This is important for practitioners as it means that small-sided games can allow both endurance and skills training to be carried out simultaneously, thus providing a more efficient training stimulus. Small-sided games offer the same benefits as conventional endurance training with two sessions per week, with4 sets of 4 min of activity, interspersed with recovery periods of 3min, recommended in this population.}, language = {en} } @misc{RamirezCampilloPerezCastillaThapaetal.2022, author = {Ramirez-Campillo, Rodrigo and P{\´e}rez-Castilla, Alejandro and Thapa, Rohit Kumar and Afonso, Jos{\´e} and Clemente, Filipe Manuel Batista and Colado, Juan C. and Eduardo, Sa{\´e}z de Villarreal and Chaabene, Helmi}, title = {Effects of Plyometric Jump Training on Measures of Physical Fitness and Sport-Specific Performance of Water Sports Athletes}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {804}, issn = {1866-8364}, doi = {10.25932/publishup-57144}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571441}, pages = {27}, year = {2022}, abstract = {Background A growing body of literature is available regarding the effects of plyometric jump training (PJT) on measures of physical fitness (PF) and sport-specific performance (SSP) in-water sports athletes (WSA, i.e. those competing in sports that are practiced on [e.g. rowing] or in [e.g. swimming; water polo] water). Indeed, incoherent findings have been observed across individual studies making it difficult to provide the scientific community and coaches with consistent evidence. As such, a comprehensive systematic literature search should be conducted to clarify the existent evidence, identify the major gaps in the literature, and offer recommendations for future studies. Aim To examine the effects of PJT compared with active/specific-active controls on the PF (one-repetition maximum back squat strength, squat jump height, countermovement jump height, horizontal jump distance, body mass, fat mass, thigh girth) and SSP (in-water vertical jump, in-water agility, time trial) outcomes in WSA, through a systematic review with meta-analysis of randomized and non-randomized controlled studies. Methods The electronic databases PubMed, Scopus, and Web of Science were searched up to January 2022. According to the PICOS approach, the eligibility criteria were: (population) healthy WSA; (intervention) PJT interventions involving unilateral and/or bilateral jumps, and a minimal duration of ≥ 3 weeks; (comparator) active (i.e. standard sports training) or specific-active (i.e. alternative training intervention) control group(s); (outcome) at least one measure of PF (e.g. jump height) and/or SSP (e.g. time trial) before and after training; and (study design) multi-groups randomized and non-randomized controlled trials. The Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. The DerSimonian and Laird random-effects model was used to compute the meta-analyses, reporting effect sizes (ES, i.e. Hedges' g) with 95\% confidence intervals (95\% CIs). Statistical significance was set at p ≤ 0.05. Certainty or confidence in the body of evidence for each outcome was assessed using Grading of Recommendations Assessment, Development, and Evaluation (GRADE), considering its five dimensions: risk of bias in studies, indirectness, inconsistency, imprecision, and risk of publication bias. Results A total of 11,028 studies were identified with 26 considered eligible for inclusion. The median PEDro score across the included studies was 5.5 (moderate-to-high methodological quality). The included studies involved a total of 618 WSA of both sexes (330 participants in the intervention groups [31 groups] and 288 participants in the control groups [26 groups]), aged between 10 and 26 years, and from different sports disciplines such as swimming, triathlon, rowing, artistic swimming, and water polo. The duration of the training programmes in the intervention and control groups ranged from 4 to 36 weeks. The results of the meta-analysis indicated no effects of PJT compared to control conditions (including specific-active controls) for in-water vertical jump or agility (ES =  - 0.15 to 0.03; p = 0.477 to 0.899), or for body mass, fat mass, and thigh girth (ES = 0.06 to 0.15; p = 0.452 to 0.841). In terms of measures of PF, moderate-to-large effects were noted in favour of the PJT groups compared to the control groups (including specific-active control groups) for one-repetition maximum back squat strength, horizontal jump distance, squat jump height, and countermovement jump height (ES = 0.67 to 1.47; p = 0.041 to < 0.001), in addition to a small effect noted in favour of the PJT for SSP time-trial speed (ES = 0.42; p = 0.005). Certainty of evidence across the included studies varied from very low-to-moderate. Conclusions PJT is more effective to improve measures of PF and SSP in WSA compared to control conditions involving traditional sport-specific training as well as alternative training interventions (e.g. resistance training). It is worth noting that the present findings are derived from 26 studies of moderate-to-high methodological quality, low-to-moderate impact of heterogeneity, and very low-to-moderate certainty of evidence based on GRADE. Trial registration The protocol for this systematic review with meta-analysis was published in the Open Science platform (OSF) on January 23, 2022, under the registration doi https://doi.org/10.17605/OSF.IO/NWHS3 (internet archive link: https://archive.org/details/osf-registrations-nwhs3-v1).}, language = {en} } @misc{RamirezCampilloAndradeNikolaidisetal.2020, author = {Ramirez-Campillo, Rodrigo and Andrade, David C. and Nikolaidis, Pantelis T. and Moran, Jason and Clemente, Filipe Manuel and Chaabene, Helmi and Comfort, Paul}, title = {Effects of plyometric jump training on vertical jump height of volleyball players: a systematic review with meta-analysis of randomized-controlled trial}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-52589}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525898}, pages = {13}, year = {2020}, abstract = {This meta-analysis aimed to assess the effects of plyometric jump training (PJT) on volleyball players' vertical jump height (VJH), comparing changes with those observed in a matched control group. A literature search in the databases of PubMed, MEDLINE, Web of Science, and SCOPUS was conducted. Only randomized-controlled trials and studies that included a pre-to-post intervention assessment of VJH were included. They involved only healthy volleyball players with no restrictions on age or sex. Data were independently extracted from the included studies by two authors. The Physiotherapy Evidence Database scale was used to assess the risk of bias, and methodological quality, of eligible studies included in the review. From 7,081 records, 14 studies were meta-analysed. A moderate Cohen's d effect size (ES = 0.82, p <0.001) was observed for VJH, with moderate heterogeneity (I2 = 34.4\%, p = 0.09) and no publication bias (Egger's test, p = 0.59). Analyses of moderator variables revealed no significant differences for PJT program duration (≤8 vs. >8 weeks, ES = 0.79 vs. 0.87, respectively), frequency (≤2 vs. >2 sessions/week, ES = 0.83 vs. 0.78, respectively), total number of sessions (≤16 vs. >16 sessions, ES = 0.73 vs. 0.92, respectively), sex (female vs. male, ES = 1.3 vs. 0.5, respectively), age (≥19 vs. <19 years of age, ES = 0.89 vs. 0.70, respectively), and volume (>2,000 vs. <2,000 jumps, ES = 0.76 vs. 0.79, respectively). In conclusion, PJT appears to be effective in inducing improvements in volleyball players' VJH. Improvements in VJH may be achieved by both male and female volleyball players, in different age groups, with programs of relatively low volume and frequency. Though PJT seems to be safe for volleyball players, it is recommended that an individualized approach, according to player position, is adopted with some players (e.g. libero) less prepared to sustain PJT loads.}, language = {en} } @article{NegraChaabeneSammoudetal.2020, author = {Negra, Yassine and Chaabene, Helmi and Sammoud, Senda and Prieske, Olaf and Moran, Jason and Ramirez-Campillo, Rodrigo and Nejmaoui, Ali and Granacher, Urs}, title = {The increased effectiveness of loaded versus unloaded plyometric jump training in improving muscle power, speed, change of direction, and kicking-distance performance in prepubertal male soccer players}, series = {International journal of sports physiology and performance : IJSSP}, volume = {15}, journal = {International journal of sports physiology and performance : IJSSP}, number = {2}, publisher = {Human Kinetics}, address = {Champaign, Ill.}, issn = {1555-0265}, doi = {10.1123/ijspp.2018-0866}, pages = {189 -- 195}, year = {2020}, abstract = {Purpose: To examine the effects of loaded (LPJT) versus unloaded plyometric jump training (UPJT) programs on measures of muscle power, speed, change of direction (CoD), and kicking-distance performance in prepubertal male soccer players. Methods: Participants (N = 29) were randomly assigned to a LPJT group (n = 13; age = 13.0 [0.7] y) using weighted vests or UPJT group (n = 16; age = 13.0 [0.5] y) using body mass only. Before and after the intervention, tests for the assessment of proxies of muscle power (ie, countermovement jump, standing long jump); speed (ie, 5-, 10-, and 20-m sprint); CoD (ie, Illinois CoD test, modified 505 agility test); and kicking-distance were conducted. Data were analyzed using magnitude-based inferences. Results: Within-group analyses for the LPJT group showed large and very large improvements for 10-m sprint time (effect size [ES] = 2.00) and modified 505 CoD (ES = 2.83) tests, respectively. For the same group, moderate improvements were observed for the Illinois CoD test (ES = 0.61), 5- and 20-m sprint time test (ES = 1.00 for both the tests), countermovement jump test (ES = 1.00), and the maximal kicking-distance test (ES = 0.90). Small enhancements in the standing long jump test (ES = 0.50) were apparent. Regarding the UPJT group, small improvements were observed for all tests (ES = 0.33-0.57), except 5- and 10-m sprint time (ES = 1.00 and 0.63, respectively). Between-group analyses favored the LPJT group for the modified 505 CoD (ES = 0.61), standing long jump (ES = 0.50), and maximal kicking-distance tests (ES = 0.57), but not for the 5-m sprint time test (ES = 1.00). Only trivial between-group differences were shown for the remaining tests (ES = 0.00-0.09). Conclusion: Overall, LPJT appears to be more effective than UPJT in improving measures of muscle power, speed, CoD, and kicking-distance performance in prepubertal male soccer players.}, language = {en} } @misc{RamirezCampilloMoranOliveretal.2022, author = {Ramirez-Campillo, Rodrigo and Moran, Jason and Oliver, Jonathan L. and Pedley, Jason S. and Lloyd, Rhodri S. and Granacher, Urs}, title = {Programming Plyometric-Jump Training in Soccer: A Review}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {813}, issn = {1866-8364}, doi = {10.25932/publishup-58103}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-581031}, pages = {20}, year = {2022}, abstract = {The aim of this review was to describe and summarize the scientific literature on programming parameters related to jump or plyometric training in male and female soccer players of different ages and fitness levels. A literature search was conducted in the electronic databases PubMed, Web of Science and Scopus using keywords related to the main topic of this study (e.g., "ballistic" and "plyometric"). According to the PICOS framework, the population for the review was restricted to soccer players, involved in jump or plyometric training. Among 7556 identified studies, 90 were eligible for inclusion. Only 12 studies were found for females. Most studies (n = 52) were conducted with youth male players. Moreover, only 35 studies determined the effectiveness of a given jump training programming factor. Based on the limited available research, it seems that a dose of 7 weeks (1-2 sessions per week), with ~80 jumps (specific of combined types) per session, using near-maximal or maximal intensity, with adequate recovery between repetitions (<15 s), sets (≥30 s) and sessions (≥24-48 h), using progressive overload and taper strategies, using appropriate surfaces (e.g., grass), and applied in a well-rested state, when combined with other training methods, would increase the outcome of effective and safe plyometric-jump training interventions aimed at improving soccer players physical fitness. In conclusion, jump training is an effective and easy-to-administer training approach for youth, adult, male and female soccer players. However, optimal programming for plyometric-jump training in soccer is yet to be determined in future research.}, language = {en} } @misc{RamachandranSinghRamirezCampilloetal.2021, author = {Ramachandran, Akhilesh Kumar and Singh, Utkarsh and Ramirez-Campillo, Rodrigo and Clemente, Filipe Manuel and Afonso, Jos{\´e} and Granacher, Urs}, title = {Effects of Plyometric Jump Training on Balance Performance in Healthy Participants: A Systematic Review With Meta-Analysis / Effects of plyometric-jump training on balance performance in healthy individuals across the lifespan: A systematic review with meta-analysisist}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-52403}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524034}, pages = {24}, year = {2021}, abstract = {Postural balance represents a fundamental movement skill for the successful performance of everyday and sport-related activities. There is ample evidence on the effectiveness of balance training on balance performance in athletic and non-athletic population. However, less is known on potential transfer effects of other training types, such as plyometric jump training (PJT) on measures of balance. Given that PJT is a highly dynamic exercise mode with various forms of jump-landing tasks, high levels of postural control are needed to successfully perform PJT exercises. Accordingly, PJT has the potential to not only improve measures of muscle strength and power but also balance. To systematically review and synthetize evidence from randomized and non-randomized controlled trials regarding the effects of PJT on measures of balance in apparently healthy participants. Systematic literature searches were performed in the electronic databases PubMed, Web of Science, and SCOPUS. A PICOS approach was applied to define inclusion criteria, (i) apparently healthy participants, with no restrictions on their fitness level, sex, or age, (ii) a PJT program, (iii) active controls (any sport-related activity) or specific active controls (a specific exercise type such as balance training), (iv) assessment of dynamic, static balance pre- and post-PJT, (v) randomized controlled trials and controlled trials. The methodological quality of studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. This meta-analysis was computed using the inverse variance random-effects model. The significance level was set at p <0.05. The initial search retrieved 8,251 plus 23 records identified through other sources. Forty-two articles met our inclusion criteria for qualitative and 38 for quantitative analysis (1,806 participants [990 males, 816 females], age range 9-63 years). PJT interventions lasted between 4 and 36 weeks. The median PEDro score was 6 and no study had low methodological quality (≤3). The analysis revealed significant small effects of PJT on overall (dynamic and static) balance (ES = 0.46; 95\% CI = 0.32-0.61; p < 0.001), dynamic (e.g., Y-balance test) balance (ES = 0.50; 95\% CI = 0.30-0.71; p < 0.001), and static (e.g., flamingo balance test) balance (ES = 0.49; 95\% CI = 0.31-0.67; p < 0.001). The moderator analyses revealed that sex and/or age did not moderate balance performance outcomes. When PJT was compared to specific active controls (i.e., participants undergoing balance training, whole body vibration training, resistance training), both PJT and alternative training methods showed similar effects on overall (dynamic and static) balance (p = 0.534). Specifically, when PJT was compared to balance training, both training types showed similar effects on overall (dynamic and static) balance (p = 0.514). Conclusion: Compared to active controls, PJT showed small effects on overall balance, dynamic and static balance. Additionally, PJT produced similar balance improvements compared to other training types (i.e., balance training). Although PJT is widely used in athletic and recreational sport settings to improve athletes' physical fitness (e.g., jumping; sprinting), our systematic review with meta-analysis is novel in as much as it indicates that PJT also improves balance performance. The observed PJT-related balance enhancements were irrespective of sex and participants' age. Therefore, PJT appears to be an adequate training regime to improve balance in both, athletic and recreational settings.}, language = {en} } @misc{ArntzMkaouerMarkovetal.2022, author = {Arntz, Fabian and Mkaouer, Bessem and Markov, Adrian and Schoenfeld, Brad and Moran, Jason and Ramirez-Campillo, Rodrigo and Behrens, Martin and Baumert, Philipp and Erskine, Robert M. and Hauser, Lukas and Chaabene, Helmi}, title = {Effect of Plyometric Jump Training on Skeletal Muscle Hypertrophy in Healthy Individuals: A Systematic Review With Multilevel Meta-Analysis}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-56316}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563165}, pages = {1 -- 17}, year = {2022}, abstract = {Objective: To examine the effect of plyometric jump training on skeletal muscle hypertrophy in healthy individuals. Methods: A systematic literature search was conducted in the databases PubMed, SPORTDiscus, Web of Science, and Cochrane Library up to September 2021. Results: Fifteen studies met the inclusion criteria. The main overall finding (44 effect sizes across 15 clusters median = 2, range = 1-15 effects per cluster) indicated that plyometric jump training had small to moderate effects [standardised mean difference (SMD) = 0.47 (95\% CIs = 0.23-0.71); p < 0.001] on skeletal muscle hypertrophy. Subgroup analyses for training experience revealed trivial to large effects in non-athletes [SMD = 0.55 (95\% CIs = 0.18-0.93); p = 0.007] and trivial to moderate effects in athletes [SMD = 0.33 (95\% CIs = 0.16-0.51); p = 0.001]. Regarding muscle groups, results showed moderate effects for the knee extensors [SMD = 0.72 (95\% CIs = 0.66-0.78), p < 0.001] and equivocal effects for the plantar flexors [SMD = 0.65 (95\% CIs = -0.25-1.55); p = 0.143]. As to the assessment methods of skeletal muscle hypertrophy, findings indicated trivial to small effects for prediction equations [SMD = 0.29 (95\% CIs = 0.16-0.42); p < 0.001] and moderate-to-large effects for ultrasound imaging [SMD = 0.74 (95\% CIs = 0.59-0.89); p < 0.001]. Meta-regression analysis indicated that the weekly session frequency moderates the effect of plyometric jump training on skeletal muscle hypertrophy, with a higher weekly session frequency inducing larger hypertrophic gains [β = 0.3233 (95\% CIs = 0.2041-0.4425); p < 0.001]. We found no clear evidence that age, sex, total training period, single session duration, or the number of jumps per week moderate the effect of plyometric jump training on skeletal muscle hypertrophy [β = -0.0133 to 0.0433 (95\% CIs = -0.0387 to 0.1215); p = 0.101-0.751]. Conclusion: Plyometric jump training can induce skeletal muscle hypertrophy, regardless of age and sex. There is evidence for relatively larger effects in non-athletes compared with athletes. Further, the weekly session frequency seems to moderate the effect of plyometric jump training on skeletal muscle hypertrophy, whereby more frequent weekly plyometric jump training sessions elicit larger hypertrophic adaptations.}, language = {en} }