@article{SchlemmLevermann2019, author = {Schlemm, Tanja and Levermann, Anders}, title = {A simple stress-based cliff-calving law}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {13}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {9}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-13-2475-2019}, pages = {2475 -- 2488}, year = {2019}, abstract = {Over large coastal regions in Greenland and Antarctica the ice sheet calves directly into the ocean. In contrast to ice-shelf calving, an increase in calving from grounded glaciers contributes directly to sea-level rise. Ice cliffs with a glacier freeboard larger than approximate to 100 m are currently not observed, but it has been shown that such ice cliffs are increasingly unstable with increasing ice thickness. This cliff calving can constitute a self-amplifying ice loss mechanism that may significantly alter sea-level projections both of Greenland and Antarctica. Here we seek to derive a minimalist stress-based parametrization for cliff calving from grounded glaciers whose freeboards exceed the 100m stability limit derived in previous studies. This will be an extension of existing calving laws for tidewater glaciers to higher ice cliffs. To this end we compute the stress field for a glacier with a simplified two-dimensional geometry from the two-dimensional Stokes equation. First we assume a constant yield stress to derive the failure region at the glacier front from the stress field within the glacier. Secondly, we assume a constant response time of ice failure due to exceedance of the yield stress. With this strongly constraining but very simple set of assumptions we propose a cliff-calving law where the calving rate follows a power-law dependence on the freeboard of the ice with exponents between 2 and 3, depending on the relative water depth at the calving front. The critical freeboard below which the ice front is stable decreases with increasing relative water depth of the calving front. For a dry water front it is, for example, 75 m. The purpose of this study is not to provide a comprehensive calving law but to derive a particularly simple equation with a transparent and minimalist set of assumptions.}, language = {en} } @article{KuekenTrevesNikoloski2023, author = {K{\"u}ken, Anika and Treves, Haim and Nikoloski, Zoran}, title = {A simulation-free constrained regression approach for flux estimation in isotopically nonstationary metabolic flux analysis with applications in microalgae}, series = {Frontiers in plant science : FPLS}, volume = {14}, journal = {Frontiers in plant science : FPLS}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2023.1140829}, pages = {12}, year = {2023}, abstract = {Introduction Flux phenotypes from different organisms and growth conditions allow better understanding of differential metabolic networks functions. Fluxes of metabolic reactions represent the integrated outcome of transcription, translation, and post-translational modifications, and directly affect growth and fitness. However, fluxes of intracellular metabolic reactions cannot be directly measured, but are estimated via metabolic flux analysis (MFA) that integrates data on isotope labeling patterns of metabolites with metabolic models. While the application of metabolomics technologies in photosynthetic organisms have resulted in unprecedented data from 13CO2-labeling experiments, the bottleneck in flux estimation remains the application of isotopically nonstationary MFA (INST-MFA). INST-MFA entails fitting a (large) system of coupled ordinary differential equations, with metabolite pools and reaction fluxes as parameters. Here, we focus on the Calvin-Benson cycle (CBC) as a key pathway for carbon fixation in photosynthesizing organisms and ask if approaches other than classical INST-MFA can provide reliable estimation of fluxes for reactions comprising this pathway. Methods First, we show that flux estimation with the labeling patterns of all CBC intermediates can be formulated as a single constrained regression problem, avoiding the need for repeated simulation of time-resolved labeling patterns. Results We then compare the flux estimates of the simulation-free constrained regression approach with those obtained from the classical INST-MFA based on labeling patterns of metabolites from the microalgae Chlamydomonas reinhardtii, Chlorella sorokiniana and Chlorella ohadii under different growth conditions. Discussion Our findings indicate that, in data-rich scenarios, simulation-free regression-based approaches provide a suitable alternative for flux estimation from classical INST-MFA since we observe a high qualitative agreement (rs=0.89) to predictions obtained from INCA, a state-of-the-art tool for INST-MFA.}, language = {en} } @article{BalderjahnAppenfeller2023, author = {Balderjahn, Ingo and Appenfeller, Dennis}, title = {A social marketing approach to voluntary simplicity}, series = {Sustainability}, volume = {15}, journal = {Sustainability}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su15032302}, pages = {17}, year = {2023}, abstract = {Higher eco-efficiency will not be enough to slow global warming caused by climate change. To keep global warming to 2 degrees, people also need to reduce their consumption. At present, however, many who would be able to do so seem unwilling to comply. Given the threats of a runaway climate change, urgent measures are needed to promote less personal consumption. This study, therefore, examines whether social marketing consume-less appeals can be used to encourage consumers to voluntarily abstain from consumption. As part of an online experiment with nearly 2000 randomly sampled users of an online platform for sustainable consumption, we tested the effectiveness of five different "consume-less" appeals based on traditional advertising formats (including emotional, informational, and social claims). The study shows that consume-less appeals are capable of limiting personal desire to buy. However, significant differences in the effectiveness of the appeal formats used in this study were observed. In addition, we found evidence of rebound effects, which leads us to critically evaluate the overall potential of social marketing to promote more resource-conserving lifestyles. While commercial consumer-free appeals have previously been studied (e.g., Patagonia's "Don't Buy This Jacked"), this study on the effectiveness of non-commercial consume-free appeals is novel and provides new insights.}, language = {en} } @article{KoertingKoellnerKurasetal.2021, author = {K{\"o}rting, Friederike Magdalena and K{\"o}llner, Nicole and Kuras, Agnieszka and B{\"o}sche, Nina Kristin and Rogass, Christian and Mielke, Christian and Elger, Kirsten and Altenberger, Uwe}, title = {A solar optical hyperspectral library of rare-earth-bearing minerals, rare-earth oxide powders, copper-bearing minerals and Apliki mine surface samples}, series = {Earth system science data : ESSD}, volume = {13}, journal = {Earth system science data : ESSD}, publisher = {Copernics Publications}, address = {Katlenburg-Lindau}, issn = {1866-3508}, doi = {10.5194/essd-13-923-2021}, pages = {923 -- 942}, year = {2021}, abstract = {Mineral resource exploration and mining is an essential part of today's high-tech industry. Elements such as rare-earth elements (REEs) and copper are, therefore, in high demand. Modern exploration techniques from multiple platforms (e.g., spaceborne and airborne), to detect and map the spectral characteristics of the materials of interest, require spectral libraries as an essential reference. They include field and laboratory spectral information in combination with geochemical analyses for validation. Here, we present a collection of REE- and copper-related hyperspectral spectra with associated geochemical information. The libraries contain reflectance spectra from rare-earth element oxides, REE-bearing minerals, copper-bearing minerals and mine surface samples from the Apliki copper-gold-pyrite mine in the Republic of Cyprus. The samples were measured with the HySpex imaging spectrometers in the visible and near infrared (VNIR) and shortwave infrared (SWIR) range (400-2500 nm). The geochemical validation of each sample is provided with the reflectance spectra. The spectral libraries are openly available to assist future mineral mapping campaigns and laboratory spectroscopic analyses. The spectral libraries and corresponding geochemistry are published via GFZ Data Services with the following DOIs: https://doi.org/10.5880/GFZ.1.4.2019.004 (13 REE-bearing minerals and 16 oxide powders, Koerting et al., 2019a), https://doi.org/10.5880/GFZ.1.4.2019.003 (20 copper-bearing minerals, Koellner et al., 2019), and https://doi.org/10.5880/GFZ.1.4.2019.005 (37 copper-bearing surface material samples from the Apliki coppergold-pyrite mine in Cyprus, Koerting et al., 2019b). All spectral libraries are united and comparable by the internally consistent method of hyperspectral data acquisition in the laboratory.}, language = {en} } @article{PickEffenbergerZhelavskayaetal.2019, author = {Pick, Leonie and Effenberger, Frederic and Zhelavskaya, Irina and Korte, Monika}, title = {A Statistical Classifier for Historical Geomagnetic Storm Drivers Derived Solely From Ground-Based Magnetic Field Measurements}, series = {Earth and Space Science}, volume = {6}, journal = {Earth and Space Science}, publisher = {American Geophysical Union}, address = {Malden, Mass.}, issn = {2333-5084}, doi = {10.1029/2019EA000726}, pages = {2000 -- 2015}, year = {2019}, abstract = {Solar wind observations show that geomagnetic storms are mainly driven by interplanetary coronal mass ejections (ICMEs) and corotating or stream interaction regions (C/SIRs). We present a binary classifier that assigns one of these drivers to 7,546 storms between 1930 and 2015 using ground-based geomagnetic field observations only. The input data consists of the long-term stable Hourly Magnetospheric Currents index alongside the corresponding midlatitude geomagnetic observatory time series. This data set provides comprehensive information on the global storm time magnetic disturbance field, particularly its spatial variability, over eight solar cycles. For the first time, we use this information statistically with regard to an automated storm driver identification. Our supervised classification model significantly outperforms unskilled baseline models (78\% accuracy with 26[19]\% misidentified interplanetary coronal mass ejections [corotating or stream interaction regions]) and delivers plausible driver occurrences with regard to storm intensity and solar cycle phase. Our results can readily be used to advance related studies fundamental to space weather research, for example, studies connecting galactic cosmic ray modulation and geomagnetic disturbances. They are fully reproducible by means of the underlying open-source software (Pick, 2019, http://doi.org/10.5880/GFZ.2.3.2019.003)}, language = {en} } @article{KuekenWenderingLangaryetal.2021, author = {K{\"u}ken, Anika and Wendering, Philipp and Langary, Damoun and Nikoloski, Zoran}, title = {A structural property for reduction of biochemical networks}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-96835-1}, pages = {11}, year = {2021}, abstract = {Large-scale biochemical models are of increasing sizes due to the consideration of interacting organisms and tissues. Model reduction approaches that preserve the flux phenotypes can simplify the analysis and predictions of steady-state metabolic phenotypes. However, existing approaches either restrict functionality of reduced models or do not lead to significant decreases in the number of modelled metabolites. Here, we introduce an approach for model reduction based on the structural property of balancing of complexes that preserves the steady-state fluxes supported by the network and can be efficiently determined at genome scale. Using two large-scale mass-action kinetic models of Escherichia coli, we show that our approach results in a substantial reduction of 99\% of metabolites. Applications to genome-scale metabolic models across kingdoms of life result in up to 55\% and 85\% reduction in the number of metabolites when arbitrary and mass-action kinetics is assumed, respectively. We also show that predictions of the specific growth rate from the reduced models match those based on the original models. Since steady-state flux phenotypes from the original model are preserved in the reduced, the approach paves the way for analysing other metabolic phenotypes in large-scale biochemical networks.}, language = {en} } @article{RodriguezZuluagaStolleYamazakietal.2021, author = {Rodr{\´i}guez Zuluaga, Juan and Stolle, Claudia and Yamazaki, Yosuke and Xiong, Chao and England, Scott L.}, title = {A synoptic-scale wavelike structure in the nighttime equatorial ionization anomaly}, series = {Earth and Space Science : ESS}, volume = {8}, journal = {Earth and Space Science : ESS}, number = {2}, publisher = {American Geophysical Union}, address = {Malden, Mass.}, issn = {2333-5084}, doi = {10.1029/2020EA001529}, pages = {10}, year = {2021}, abstract = {Both ground- and satellite-based airglow imaging have significantly contributed to understanding the low-latitude ionosphere, especially the morphology and dynamics of the equatorial ionization anomaly (EIA). The NASA Global-scale Observations of the Limb and Disk (GOLD) mission focuses on far-ultraviolet airglow images from a geostationary orbit at 47.5 degrees W. This region is of particular interest at low magnetic latitudes because of the high magnetic declination (i.e., about -20 degrees) and proximity of the South Atlantic magnetic anomaly. In this study, we characterize an exciting feature of the nighttime EIA using GOLD observations from October 5, 2018 to June 30, 2020. It consists of a wavelike structure of a few thousand kilometers seen as poleward and equatorward displacements of the EIA-crests. Initial analyses show that the synoptic-scale structure is symmetric about the dip equator and appears nearly stationary with time over the night. In quasi-dipole coordinates, maxima poleward displacements of the EIA-crests are seen at about +/- 12 degrees latitude and around 20 and 60 degrees longitude (i.e., in geographic longitude at the dip equator, about 53 degrees W and 14 degrees W). The wavelike structure presents typical zonal wavelengths of about 6.7 x 10(3) km and 3.3 x 10(3) km. The structure's occurrence and wavelength are highly variable on a day-to-day basis with no apparent dependence on geomagnetic activity. In addition, a cluster or quasi-periodic wave train of equatorial plasma depletions (EPDs) is often detected within the synoptic-scale structure. We further outline the difference in observing these EPDs from FUV images and in situ measurements during a GOLD and Swarm mission conjunction.}, language = {en} } @article{PrillWalterKrolikowskaetal.2021, author = {Prill, Robert and Walter, Marina and Kr{\´o}likowska, Aleksandra and Becker, Roland}, title = {A systematic review of diagnostic accuracy and clinical applications of wearable movement sensors for knee joint rehabilitation}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {24}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s21248221}, pages = {14}, year = {2021}, abstract = {In clinical practice, only a few reliable measurement instruments are available for monitoring knee joint rehabilitation. Advances to replace motion capturing with sensor data measurement have been made in the last years. Thus, a systematic review of the literature was performed, focusing on the implementation, diagnostic accuracy, and facilitators and barriers of integrating wearable sensor technology in clinical practices based on a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. For critical appraisal, the COSMIN Risk of Bias tool for reliability and measurement of error was used. PUBMED, Prospero, Cochrane database, and EMBASE were searched for eligible studies. Six studies reporting reliability aspects in using wearable sensor technology at any point after knee surgery in humans were included. All studies reported excellent results with high reliability coefficients, high limits of agreement, or a few detectable errors. They used different or partly inappropriate methods for estimating reliability or missed reporting essential information. Therefore, a moderate risk of bias must be considered. Further quality criterion studies in clinical settings are needed to synthesize the evidence for providing transparent recommendations for the clinical use of wearable movement sensors in knee joint rehabilitation.}, language = {en} } @article{PradhanCostaRybskietal.2017, author = {Pradhan, Prajal and Costa, Lu{\´i}s F{\´i}l{\´i}pe Carvalho da and Rybski, Diego and Lucht, Wolfgang and Kropp, J{\"u}rgen}, title = {A Systematic Study of Sustainable Development Goal (SDG) Interactions}, series = {Earths Future}, volume = {5}, journal = {Earths Future}, publisher = {Wiley}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1002/2017EF000632}, pages = {1169 -- 1179}, year = {2017}, abstract = {Sustainable development goals (SDGs) have set the 2030 agenda to transform our world by tackling multiple challenges humankind is facing to ensure well-being, economic prosperity, and environmental protection. In contrast to conventional development agendas focusing on a restricted set of dimensions, the SDGs provide a holistic and multidimensional view on development. Hence, interactions among the SDGs may cause diverging results. To analyze the SDG interactions we systematize the identification of synergies and trade-offs using official SDG indicator data for 227 countries. A significant positive correlation between a pair of SDG indicators is classified as a synergy while a significant negative correlation is classified as a trade-off. We rank synergies and trade-offs between SDGs pairs on global and country scales in order to identify the most frequent SDG interactions. For a given SDG, positive correlations between indicator pairs were found to outweigh the negative ones in most countries. Among SDGs the positive and negative correlations between indicator pairs allowed for the identification of particular global patterns. SDG 1 (No poverty) has synergetic relationship with most of the other goals, whereas SDG 12 (Responsible consumption and production) is the goal most commonly associated with trade-offs. The attainment of the SDG agenda will greatly depend on whether the identified synergies among the goals can be leveraged. In addition, the highlighted trade-offs, which constitute obstacles in achieving the SDGs, need to be negotiated and made structurally nonobstructive by deeper changes in the current strategies.}, language = {en} } @article{KabothBahrBahrZeedenetal.2021, author = {Kaboth-Bahr, Stefanie and Bahr, Andr{\´e} and Zeeden, Christian and Yamoah, Kweku A. and Lone, Mahjoor Ahmad and Chuang, Chih-Kai and L{\"o}wemark, Ludvig and Wei, Kuo-Yen}, title = {A tale of shifting relations}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-85444-7}, pages = {10}, year = {2021}, abstract = {Understanding the dynamics between the East Asian summer (EASM) and winter monsoon (EAWM) is needed to predict their variability under future global warming scenarios. Here, we investigate the relationship between EASM and EAWM as well as the mechanisms driving their variability during the last 10,000 years by stacking marine and terrestrial (non-speleothem) proxy records from the East Asian realm. This provides a regional and proxy independent signal for both monsoonal systems. The respective signal was subsequently analysed using a linear regression model. We find that the phase relationship between EASM and EAWM is not time-constant and significantly depends on orbital configuration changes. In addition, changes in the Atlantic Meridional Overturning circulation, Arctic sea-ice coverage, El Ni{\~n}o-Southern Oscillation and Sun Spot numbers contributed to millennial scale changes in the EASM and EAWM during the Holocene. We also argue that the bulk signal of monsoonal activity captured by the stacked non-speleothem proxy records supports the previously argued bias of speleothem climatic archives to moisture source changes and/or seasonality.}, language = {en} } @article{CaoTianAndreevetal.2020, author = {Cao, Xianyong and Tian, Fang and Andreev, Andrei and Anderson, Patricia M. and Lozhkin, Anatoly V. and Bezrukova, Elena and Ni, Jian and Rudaya, Natalia and Stobbe, Astrid and Wieczorek, Mareike and Herzschuh, Ulrike}, title = {A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr}, series = {Earth System Science Data}, volume = {12}, journal = {Earth System Science Data}, number = {1}, publisher = {Copernics Publications}, address = {Katlenburg-Lindau}, issn = {1866-3508}, doi = {10.5194/essd-12-119-2020}, pages = {119 -- 135}, year = {2020}, abstract = {Pollen records from Siberia are mostly absent in global or Northern Hemisphere synthesis works. Here we present a taxonomically harmonized and temporally standardized pollen dataset that was synthesized using 173 palynological records from Siberia and adjacent areas (northeastern Asia, 42-75 degrees N, 50-180 degrees E). Pollen data were taxonomically harmonized, i.e. the original 437 taxa were assigned to 106 combined pollen taxa. Age-depth models for all records were revised by applying a constant Bayesian age-depth modelling routine. The pollen dataset is available as count data and percentage data in a table format (taxa vs. samples), with age information for each sample. The dataset has relatively few sites covering the last glacial period between 40 and 11.5 ka (calibrated thousands of years before 1950 CE) particularly from the central and western part of the study area. In the Holocene period, the dataset has many sites from most of the area, with the exception of the central part of Siberia. Of the 173 pollen records, 81 \% of pollen counts were downloaded from open databases (GPD, EPD, PANGAEA) and 10 \% were contributions by the original data gatherers, while a few were digitized from publications. Most of the pollen records originate from peatlands (48 \%) and lake sediments (33 \%). Most of the records (83 \%) have >= 3 dates, allowing the establishment of reliable chronologies. The dataset can be used for various purposes, including pollen data mapping (example maps for Larix at selected time slices are shown) as well as quantitative climate and vegetation reconstructions. The datasets for pollen counts and pollen percentages are available at https://doi.org/10.1594/PANGAEA.898616 (Cao et al., 2019a), also including the site information, data source, original publication, dating data, and the plant functional type for each pollen taxa.}, language = {en} } @article{ScheibelTrappLimbergeretal.2020, author = {Scheibel, Willy and Trapp, Matthias and Limberger, Daniel and D{\"o}llner, J{\"u}rgen Roland Friedrich}, title = {A taxonomy of treemap visualization techniques}, series = {Science and Technology Publications}, journal = {Science and Technology Publications}, publisher = {Springer}, address = {Berlin}, pages = {8}, year = {2020}, abstract = {A treemap is a visualization that has been specifically designed to facilitate the exploration of tree-structured data and, more general, hierarchically structured data. The family of visualization techniques that use a visual metaphor for parent-child relationships based "on the property of containment" (Johnson, 1993) is commonly referred to as treemaps. However, as the number of variations of treemaps grows, it becomes increasingly important to distinguish clearly between techniques and their specific characteristics. This paper proposes to discern between Space-filling Treemap TS, Containment Treemap TC, Implicit Edge Representation Tree TIE, and Mapped Tree TMT for classification of hierarchy visualization techniques and highlights their respective properties. This taxonomy is created as a hyponymy, i.e., its classes have an is-a relationship to one another: TS TC TIE TMT. With this proposal, we intend to stimulate a discussion on a more unambiguous classification of treemaps and, furthermore, broaden what is understood by the concept of treemap itself.}, language = {en} } @article{NohrHaugsbakken2023, author = {Nohr, Magnus and Haugsbakken, Halvdan}, title = {A taxonomy of video genres as a scaffolding strategy for video making in education}, series = {EMOOCs 2023 : Post-Covid Prospects for Massive Open Online Courses - Boost or Backlash?}, journal = {EMOOCs 2023 : Post-Covid Prospects for Massive Open Online Courses - Boost or Backlash?}, editor = {Meinel, Christoph and Schweiger, Stefanie and Staubitz, Thomas and Conrad, Robert and Alario Hoyos, Carlos and Ebner, Martin and Sancassani, Susanna and Żur, Agnieszka and Friedl, Christian and Halawa, Sherif and Gamage, Dilrukshi and Scott, Jeffrey and Kristine Jonson Carlon, May and Deville, Yves and Gaebel, Michael and Delgado Kloos, Carlos and von Schmieden, Karen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-62429}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-624294}, pages = {201 -- 220}, year = {2023}, abstract = {This research paper aims to introduce a novel practitioner-oriented and research-based taxonomy of video genres. This taxonomy can serve as a scaffolding strategy to support educators throughout the entire educational system in creating videos for pedagogical purposes. A taxonomy of video genres is essential as videos are highly valued resources among learners. Although the use of videos in education has been extensively researched and well-documented in systematic research reviews, gaps remain in the literature. Predominantly, researchers employ sophisticated quantitative methods and similar approaches to measure the performance of videos. This trend has led to the emergence of a strong learning analytics research tradition with its embedded literature. This body of research includes analysis of performance of videos in online courses such as Massive Open Online Courses (MOOCs). Surprisingly, this same literature is limited in terms of research outlining approaches to designing and creating educational videos, which applies to both video-based learning and online courses. This issue results in a knowledge gap, highlighting the need for developing pedagogical tools and strategies for video making. These can be found in frameworks, guidelines, and taxonomies, which can serve as scaffolding strategies. In contrast, there appears to be very few frameworks available for designing and creating videos for pedagogica purposes, apart from a few well-known frameworks. In this regard, this research paper proposes a novel taxonomy of video genres that educators can utilize when creating videos intended for use in either video-based learning environments or online courses. To create this taxonomy, a large number of videos from online courses were collected and analyzed using a mixed-method research design approach.}, language = {en} } @misc{FrankKreitz2018, author = {Frank, Mario and Kreitz, Christoph}, title = {A theorem prover for scientific and educational purposes}, series = {Electronic proceedings in theoretical computer science}, journal = {Electronic proceedings in theoretical computer science}, number = {267}, publisher = {Open Publishing Association}, address = {Sydney}, issn = {2075-2180}, doi = {10.4204/EPTCS.267.4}, pages = {59 -- 69}, year = {2018}, abstract = {We present a prototype of an integrated reasoning environment for educational purposes. The presented tool is a fragment of a proof assistant and automated theorem prover. We describe the existing and planned functionality of the theorem prover and especially the functionality of the educational fragment. This currently supports working with terms of the untyped lambda calculus and addresses both undergraduate students and researchers. We show how the tool can be used to support the students' understanding of functional programming and discuss general problems related to the process of building theorem proving software that aims at supporting both research and education.}, language = {en} } @article{CordonnierBovyBraun2019, author = {Cordonnier, Guillaume and Bovy, Benoit and Braun, Jean}, title = {A versatile, linear complexity algorithm for flow routing in topographies with depressions}, series = {Earth surface dynamics}, volume = {7}, journal = {Earth surface dynamics}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-7-549-2019}, pages = {549 -- 562}, year = {2019}, abstract = {We present a new algorithm for solving the common problem of flow trapped in closed depressions within digital elevation models, as encountered in many applications relying on flow routing. Unlike other approaches (e.g., the Priority-Flood depression filling algorithm), this solution is based on the explicit computation of the flow paths both within and across the depressions through the construction of a graph connecting together all adjacent drainage basins. Although this represents many operations, a linear time complexity can be reached for the whole computation, making it very efficient. Compared to the most optimized solutions proposed so far, we show that this algorithm of flow path enforcement yields the best performance when used in landscape evolution models. In addition to its efficiency, our proposed method also has the advantage of letting the user choose among different strategies of flow path enforcement within the depressions (i.e., filling vs. carving). Furthermore, the computed graph of basins is a generic structure that has the potential to be reused for solving other problems as well, such as the simulation of erosion. This sequential algorithm may be helpful for those who need to, e.g., process digital elevation models of moderate size on single computers or run batches of simulations as part of an inference study.}, language = {en} } @article{SurethKalkuhlEdenhoferetal.2023, author = {Sureth, Michael and Kalkuhl, Matthias and Edenhofer, Ottmar and Rockstr{\"o}m, Johan}, title = {A welfare economic approach to planetary boundaries}, series = {Jahrb{\"u}cher f{\"u}r National{\"o}konomie und Statistik}, volume = {243}, journal = {Jahrb{\"u}cher f{\"u}r National{\"o}konomie und Statistik}, number = {5}, publisher = {De Gruyter Oldenbourg}, address = {Berlin}, issn = {0021-4027}, doi = {10.1515/jbnst-2022-0022}, pages = {477 -- 542}, year = {2023}, abstract = {The crises of both the climate and the biosphere are manifestations of the imbalance between human extractive, and polluting activities and the Earth's regenerative capacity. Planetary boundaries define limits for biophysical systems and processes that regulate the stability and life support capacity of the Earth system, and thereby also define a safe operating space for humanity on Earth. Budgets associated to planetary boundaries can be understood as global commons: common pool resources that can be utilized within finite limits. Despite the analytical interpretation of planetary boundaries as global commons, the planetary boundaries framework is missing a thorough integration into economic theory. We aim to bridge the gap between welfare economic theory and planetary boundaries as derived in the natural sciences by presenting a unified theory of cost-benefit and cost-effectiveness analysis. Our pragmatic approach aims to overcome shortcomings of the practical applications of CEA and CBA to environmental problems of a planetary scale. To do so, we develop a model framework and explore decision paradigms that give guidance to setting limits on human activities. This conceptual framework is then applied to planetary boundaries. We conclude by using the realized insights to derive a research agenda that builds on the understanding of planetary boundaries as global commons.}, language = {en} } @article{BoekstegersMarcelainBarahonaPonceetal.2020, author = {Boekstegers, Felix and Marcelain, Katherine and Barahona Ponce, Carol and Baez Benavides, Pablo F. and M{\"u}ller, Bettina and de Toro, Gonzalo and Retamales, Javier and Barajas, Olga and Ahumada, Monica and Aleksandrova, Krasimira and Bermejo, Justo Lorenzo}, title = {ABCB1/4 gallbladder cancer risk variants identified in India also show strong effects in Chileans}, series = {Cancer Epidemiology}, volume = {65}, journal = {Cancer Epidemiology}, publisher = {Elsevier}, address = {Amsterdam}, pages = {5}, year = {2020}, abstract = {Background: The first large-scale genome-wide association study of gallbladder cancer (GBC) recently identified and validated three susceptibility variants in the ABCB1 and ABCB4 genes for individuals of Indian descent. We investigated whether these variants were also associated with GBC risk in Chileans, who show the highest incidence of GBC worldwide, and in Europeans with a low GBC incidence. Methods: This population-based study analysed genotype data from retrospective Chilean case-control (255 cases, 2042 controls) and prospective European cohort (108 cases, 181 controls) samples consistently with the original publication. Results: Our results confirmed the reported associations for Chileans with similar risk effects. Particularly strong associations (per-allele odds ratios close to 2) were observed for Chileans with high Native American (=Mapuche) ancestry. No associations were noticed for Europeans, but the statistical power was low. Conclusion: Taking full advantage of genetic and ethnic differences in GBC risk may improve the efficiency of current prevention programs.}, language = {en} } @article{Stellmacher2023, author = {Stellmacher, Martha}, title = {Abgelegte Musik}, series = {Genisa-Bl{\"a}tter IV}, journal = {Genisa-Bl{\"a}tter IV}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-539-2}, doi = {10.25932/publishup-58490}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-584908}, pages = {83 -- 95}, year = {2023}, language = {de} } @article{CortiCioniFranceschinietal.2019, author = {Corti, Giacomo and Cioni, Raffaello and Franceschini, Zara and Sani, Federico and Scaillet, Stephane and Molin, Paola and Isola, Ilaria and Mazzarini, Francesco and Brune, Sascha and Keir, Derek and Erbello Doelesso, Asfaw and Muluneh, Ameha and Illsley-Kemp, Finnigan and Glerum, Anne}, title = {Aborted propagation of the Ethiopian rift caused by linkage with the Kenyan rift}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-09335-2}, pages = {11}, year = {2019}, abstract = {Continental rift systems form by propagation of isolated rift segments that interact, and eventually evolve into continuous zones of deformation. This process impacts many aspects of rifting including rift morphology at breakup, and eventual ocean-ridge segmentation. Yet, rift segment growth and interaction remain enigmatic. Here we present geological data from the poorly documented Ririba rift (South Ethiopia) that reveals how two major sectors of the East African rift, the Kenyan and Ethiopian rifts, interact. We show that the Ririba rift formed from the southward propagation of the Ethiopian rift during the Pliocene but this propagation was short-lived and aborted close to the Pliocene-Pleistocene boundary. Seismicity data support the abandonment of laterally offset, overlapping tips of the Ethiopian and Kenyan rifts. Integration with new numerical models indicates that rift abandonment resulted from progressive focusing of the tectonic and magmatic activity into an oblique, throughgoing rift zone of near pure extension directly connecting the rift sectors.}, language = {en} } @article{DoeringGrigorievTapioetal.2021, author = {Doering, Ulrike and Grigoriev, Dmitry and Tapio, Kosti and Rosencrantz, Sophia and Rosencrantz, Ruben R. and Bald, Ilko and B{\"o}ker, Alexander}, title = {About the mechanism of ultrasonically induced protein capsule formation}, series = {RSC Advances : an international journal to further the chemical sciences / Royal Society of Chemistry}, volume = {11}, journal = {RSC Advances : an international journal to further the chemical sciences / Royal Society of Chemistry}, number = {27}, publisher = {RSC Publishing}, address = {London}, issn = {2046-2069}, doi = {10.1039/d0ra08100k}, pages = {16152 -- 16157}, year = {2021}, abstract = {In this paper, we propose a consistent mechanism of protein microcapsule formation upon ultrasound treatment. Aqueous suspensions of bovine serum albumin (BSA) microcapsules filled with toluene are prepared by use of high-intensity ultrasound following a reported method. Stabilization of the oil-in-water emulsion by the adsorption of the protein molecules at the interface of the emulsion droplets is accompanied by the creation of the cross-linked capsule shell due to formation of intermolecular disulfide bonds caused by highly reactive species like superoxide radicals generated sonochemically. The evidence for this mechanism, which until now remained elusive and was not proven properly, is presented based on experimental data from SDS-PAGE, Raman spectroscopy and dynamic light scattering.}, language = {en} }