@article{MoontahaSchumannArnrich2023, author = {Moontaha, Sidratul and Schumann, Franziska Elisabeth Friederike and Arnrich, Bert}, title = {Online learning for wearable EEG-Based emotion classification}, series = {Sensors}, volume = {23}, journal = {Sensors}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s23052387}, pages = {23}, year = {2023}, abstract = {Giving emotional intelligence to machines can facilitate the early detection and prediction of mental diseases and symptoms. Electroencephalography (EEG)-based emotion recognition is widely applied because it measures electrical correlates directly from the brain rather than indirect measurement of other physiological responses initiated by the brain. Therefore, we used non-invasive and portable EEG sensors to develop a real-time emotion classification pipeline. The pipeline trains different binary classifiers for Valence and Arousal dimensions from an incoming EEG data stream achieving a 23.9\% (Arousal) and 25.8\% (Valence) higher F1-Score on the state-of-art AMIGOS dataset than previous work. Afterward, the pipeline was applied to the curated dataset from 15 participants using two consumer-grade EEG devices while watching 16 short emotional videos in a controlled environment. Mean F1-Scores of 87\% (Arousal) and 82\% (Valence) were achieved for an immediate label setting. Additionally, the pipeline proved to be fast enough to achieve predictions in real-time in a live scenario with delayed labels while continuously being updated. The significant discrepancy from the readily available labels on the classification scores leads to future work to include more data. Thereafter, the pipeline is ready to be used for real-time applications of emotion classification.}, language = {en} } @inproceedings{Asche2022, author = {Asche, Matthias}, title = {Verwandtschaft, Landsmannschaft, Tischgenossenschaft}, series = {Person und Wissen: Bilanz und Perspektiven}, booktitle = {Person und Wissen: Bilanz und Perspektiven}, editor = {Gubler, Kaspar and Hesse, Christian and Schwinges, Rainer C.}, edition = {1}, publisher = {vdf}, address = {Z{\"u}rich}, isbn = {978-3-7281-4114-9}, doi = {10.3218/4114-9}, pages = {131 -- 152}, year = {2022}, language = {de} } @article{FuehnerGranacherGolleetal.2021, author = {F{\"u}hner, Thea Heidi and Granacher, Urs and Golle, Kathleen and Kliegl, Reinhold}, title = {Age and sex effects in physical fitness components of 108,295 third graders including 515 primary schools and 9 cohorts}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, publisher = {Nature Portfolio}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-021-97000-4}, pages = {1 -- 13}, year = {2021}, abstract = {Children's physical fitness development and related moderating effects of age and sex are well documented, especially boys' and girls' divergence during puberty. The situation might be different during prepuberty. As girls mature approximately two years earlier than boys, we tested a possible convergence of performance with five tests representing four components of physical fitness in a large sample of 108,295 eight-year old third-graders. Within this single prepubertal year of life and irrespective of the test, performance increased linearly with chronological age, and boys outperformed girls to a larger extent in tests requiring muscle mass for successful performance. Tests differed in the magnitude of age effects (gains), but there was no evidence for an interaction between age and sex. Moreover, "physical fitness" of schools correlated at r = 0.48 with their age effect which might imply that "fit schools" promote larger gains; expected secular trends from 2011 to 2019 were replicated.}, language = {en} } @article{BraunGemignanivanderBeek2018, author = {Braun, Jean and Gemignani, Lorenzo and van der Beek, Pieter A.}, title = {Extracting information on the spatial variability in erosion rate stored in detrital cooling age distributions in river sands}, series = {Earth surface dynamics}, volume = {6}, journal = {Earth surface dynamics}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-6-257-2018}, pages = {257 -- 270}, year = {2018}, abstract = {One of the main purposes of detrital thermochronology is to provide constraints on the regional-scale exhumation rate and its spatial variability in actively eroding mountain ranges. Procedures that use cooling age distributions coupled with hypsometry and thermal models have been developed in order to extract quantitative estimates of erosion rate and its spatial distribution, assuming steady state between tectonic uplift and erosion. This hypothesis precludes the use of these procedures to assess the likely transient response of mountain belts to changes in tectonic or climatic forcing. Other methods are based on an a priori knowledge of the in situ distribution of ages to interpret the detrital age distributions. In this paper, we describe a simple method that, using the observed detrital mineral age distributions collected along a river, allows us to extract information about the relative distribution of erosion rates in an eroding catchment without relying on a steady-state assumption, the value of thermal parameters or an a priori knowledge of in situ age distributions. The model is based on a relatively low number of parameters describing lithological variability among the various sub-catchments and their sizes and only uses the raw ages. The method we propose is tested against synthetic age distributions to demonstrate its accuracy and the optimum conditions for it use. In order to illustrate the method, we invert age distributions collected along the main trunk of the Tsangpo-Siang-Brahmaputra river system in the eastern Himalaya. From the inversion of the cooling age distributions we predict present-day erosion rates of the catchments along the Tsangpo-Siang-Brahmaputra river system, as well as some of its tributaries. We show that detrital age distributions contain dual information about present-day erosion rate, i. e., from the predicted distribution of surface ages within each catchment and from the relative contribution of any given catchment to the river distribution. The method additionally allows comparing modern erosion rates to long-term exhumation rates. We provide a simple implementation of the method in Python code within a Jupyter Notebook that includes the data used in this paper for illustration purposes.}, language = {en} } @article{WangSmithSkroblinetal.2020, author = {Wang, Qiong and Smith, Joel A. and Skroblin, Dieter and Steele, Julian A. and Wolff, Christian Michael and Caprioglio, Pietro and Stolterfoht, Martin and K{\"o}bler, Hans and Turren-Cruz, Silver-Hamill and Li, Meng and Gollwitzer, Christian and Neher, Dieter and Abate, Antonio}, title = {Managing phase purities and crystal orientation for high-performance and photostable cesium lead halide perovskite solar cells}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {9}, publisher = {WILEY-VCH}, address = {Weinheim}, pages = {9}, year = {2020}, abstract = {Inorganic perovskites with cesium (Cs+) as the cation have great potential as photovoltaic materials if their phase purity and stability can be addressed. Herein, a series of inorganic perovskites is studied, and it is found that the power conversion efficiency of solar cells with compositions CsPbI1.8Br1.2, CsPbI2.0Br1.0, and CsPbI2.2Br0.8 exhibits a high dependence on the initial annealing step that is found to significantly affect the crystallization and texture behavior of the final perovskite film. At its optimized annealing temperature, CsPbI1.8Br1.2 exhibits a pure orthorhombic phase and only one crystal orientation of the (110) plane. Consequently, this allows for the best efficiency of up to 14.6\% and the longest operational lifetime, T-S80, of approximate to 300 h, averaged of over six solar cells, during the maximum power point tracking measurement under continuous light illumination and nitrogen atmosphere. This work provides essential progress on the enhancement of photovoltaic performance and stability of CsPbI3 - xBrx perovskite solar cells.}, language = {en} } @article{AriagnoLeBouteillervanderBeeketal.2022, author = {Ariagno, Coline and Le Bouteiller, Caroline and van der Beek, Pieter A. and Klotz, S{\´e}bastien}, title = {Sediment export in marly badland catchments modulated by frost-cracking intensity, Draix-Bl{\´e}one Critical Zone Observatory, SE France}, series = {Earth surface dynamics : ESURF ; an interactive open access journal of the European Geosciences Union}, volume = {10}, journal = {Earth surface dynamics : ESURF ; an interactive open access journal of the European Geosciences Union}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-10-81-2022}, pages = {81 -- 96}, year = {2022}, abstract = {At the interface between the lithosphere and the atmosphere, the critical zone records the complex interactions between erosion, climate, geologic substrate, and life and can be directly monitored. Long data records (30 consecutive years for sediment yields) collected in the sparsely vegetated, steep, and small marly badland catchments of the Draix-Bleone Critical Zone Observatory (CZO), SE France, allow analyzing potential climatic controls on regolith dynamics and sediment export. Although widely accepted as a first-order control, rainfall variability does not fully explain the observed interannual variability in sediment export. Previous studies in this area have suggested that frost-weathering processes could drive regolith production and potentially modulate the observed pattern of sediment export. Here, we define sediment export anomalies as the residuals from a predictive model with annual rainfall intensity above a threshold as the control. We then use continuous soil temperature data recorded at different locations over multiple years to highlight the role of different frost-weathering processes (i.e., ice segregation versus volumetric expansion) in regolith production. Several proxies for different frost-weathering processes have been calculated from these data and compared to the sediment export anomalies, with careful consideration of field data quality. Our results suggest that frost-cracking intensity (linked to ice segregation) can explain about half (47 \%-64 \%) of the sediment export anomalies. In contrast, the number of freeze-thaw cycles (linked to volumetric expansion) has only a minor impact on catchment sediment response. The time spent below 0 degrees C also correlates well with the sediment export anomalies and requires fewer field data to be calculated than the frost-cracking intensity. Thus, frost-weathering processes modulate sediment export by controlling regolith production in these catchments and should be taken into account when building predictive models of sediment export from these badlands under a changing climate.}, language = {en} } @article{PeterWenderingSchlickeiseretal.2022, author = {Peter, Lena and Wendering, D{\´e}sir{\´e}e Jacqueline and Schlickeiser, Stephan and Hoffmann, Henrike and Noster, Rebecca and Wagner, Dimitrios Laurin and Zarrinrad, Ghazaleh and M{\"u}nch, Sandra and Picht, Samira and Schulenberg, Sarah and Moradian, Hanieh and Mashreghi, Mir-Farzin and Klein, Oliver and Gossen, Manfred and Roch, Toralf and Babel, Nina and Reinke, Petra and Volk, Hans-Dieter and Amini, Leila and Schmueck-Henneresse, Michael}, title = {Tacrolimus-resistant SARS-CoV-2-specific T cell products to prevent and treat severe COVID-19 in immunosuppressed patients}, series = {Molecular therapy methods and clinical development}, volume = {25}, journal = {Molecular therapy methods and clinical development}, publisher = {Cell Press}, address = {Cambridge}, issn = {2329-0501}, doi = {10.1016/j.omtm.2022.02.012}, pages = {52 -- 73}, year = {2022}, abstract = {Solid organ transplant (SOT) recipients receive therapeutic immunosuppression that compromises their immune response to infections and vaccines. For this reason, SOT patients have a high risk of developing severe coronavirus disease 2019 (COVID-19) and an increased risk of death from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Moreover, the efficiency of immunotherapies and vaccines is reduced due to the constant immunosuppression in this patient group. Here, we propose adoptive transfer of SARS-CoV-2-specific T cells made resistant to a common immunosuppressant, tacrolimus, for optimized performance in the immunosuppressed patient. Using a ribonucleoprotein approach of CRISPR-Cas9 technology, we have generated tacrolimus-resistant SARS-CoV-2-specific T cell products from convalescent donors and demonstrate their specificity and function through characterizations at the single-cell level, including flow cytometry, single-cell RNA (scRNA) Cellular Indexing of Transcriptomes and Epitopes (CITE), and T cell receptor (TCR) sequencing analyses. Based on the promising results, we aim for clinical validation of this approach in transplant recipients. Additionally, we propose a combinatory approach with tacrolimus, to prevent an overshooting immune response manifested as bystander T cell activation in the setting of severe COVID-19 immunopathology, and tacrolimus-resistant SARS-CoV-2-specific T cell products, allowing for efficient clearance of viral infection. Our strategy has the potential to prevent severe COVID-19 courses in SOT or autoimmunity settings and to prevent immunopathology while providing viral clearance in severe non-transplant COVID-19 cases.}, language = {en} } @article{PisoniStolterfohtLockingeretal.2019, author = {Pisoni, Stefano and Stolterfoht, Martin and Lockinger, Johannes and Moser, Thierry and Jiang, Yan and Caprioglio, Pietro and Neher, Dieter and Buecheler, Stephan and Tiwari, Ayodhya N.}, title = {On the origin of open-circuit voltage losses in flexible n-i-p perovskite solar cells}, series = {Science and technology of advanced materials : STAM}, volume = {20}, journal = {Science and technology of advanced materials : STAM}, publisher = {Taylor \& Francis}, address = {Abingdon}, issn = {1468-6996}, doi = {10.1080/14686996.2019.1633952}, pages = {786 -- 795}, year = {2019}, abstract = {The possibility to manufacture perovskite solar cells (PSCs) at low temperatures paves the way to flexible and lightweight photovoltaic (PV) devices manufactured via high-throughput roll-to-roll processes. In order to achieve higher power conversion efficiencies, it is necessary to approach the radiative limit via suppression of non-radiative recombination losses. Herein, we performed a systematic voltage loss analysis for a typical low-temperature processed, flexible PSC in n-i-p configuration using vacuum deposited C-60 as electron transport layer (ETL) and two-step hybrid vacuum-solution deposition for CH3NH3PbI3 perovskite absorber. We identified the ETL/absorber interface as a bottleneck in relation to non-radiative recombination losses, the quasi-Fermi level splitting (QFLS) decreases from similar to 1.23 eV for the bare absorber, just similar to 90 meV below the radiative limit, to similar to 1.10 eV when C-60 is used as ETL. To effectively mitigate these voltage losses, we investigated different interfacial modifications via vacuum deposited interlayers (BCP, B4PyMPM, 3TPYMB, and LiF). An improvement in QFLS of similar to 30-40 meV is observed after interlayer deposition and confirmed by comparable improvements in the open-circuit voltage after implementation of these interfacial modifications in flexible PSCs. Further investigations on absorber/hole transport layer (HTL) interface point out the detrimental role of dopants in Spiro-OMeTAD film (widely employed HTL in the community) as recombination centers upon oxidation and light exposure. [GRAPHICS] .}, language = {en} } @article{BarcenaAslamPozdniakovaetal.2022, author = {Barcena, Maria Luisa and Aslam, Muhammad and Pozdniakova, Sofya and Norman, Kristina and Ladilov, Yury}, title = {Cardiovascular inflammaging: mechanisms and translational aspects}, series = {Cells}, volume = {11}, journal = {Cells}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells11061010}, pages = {15}, year = {2022}, abstract = {Aging is one of the major non-reversible risk factors for several chronic diseases, including cancer, type 2 diabetes, dementia, and cardiovascular diseases (CVD), and it is a key cause of multimorbidity, disability, and frailty (decreased physical activity, fatigue, and weight loss). The underlying cellular mechanisms are complex and consist of multifactorial processes, such as telomere shortening, chronic low-grade inflammation, oxidative stress, mitochondrial dysfunction, accumulation of senescent cells, and reduced autophagy. In this review, we focused on the molecular mechanisms and translational aspects of cardiovascular aging-related inflammation, i.e., inflammaging.}, language = {en} } @article{SchulzeBettBivouretal.2020, author = {Schulze, Patricia S. C. and Bett, Alexander J. and Bivour, Martin and Caprioglio, Pietro and Gerspacher, Fabian M. and Kabakl{\i}, {\"O}zde Ş. and Richter, Armin and Stolterfoht, Martin and Zhang, Qinxin and Neher, Dieter and Hermle, Martin and Hillebrecht, Harald and Glunz, Stefan W. and Goldschmidt, Jan Christoph}, title = {25.1\% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {7}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {10}, year = {2020}, abstract = {Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10\% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80\% and up to 25.1\% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3\% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30\% tandem efficiency in the near future.}, language = {en} }