@misc{CheilakouTsopelasAnastasopoulosetal.2018, author = {Cheilakou, E. and Tsopelas, N. and Anastasopoulos, A. and Kourousis, D. and Rychkov, Dmitry and Gerhard, Reimund and Frankenstein, B. and Amditis, A. and Damigos, Y. and Bouklas, C.}, title = {Strain monitoring system for steel and concrete structures}, series = {Procedia Structural Integrity}, volume = {10}, journal = {Procedia Structural Integrity}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2452-3216}, doi = {10.1016/j.prostr.2018.09.005}, pages = {25 -- 32}, year = {2018}, abstract = {The present work is part of a collaborative H2020 European funded research project called SENSKIN, that aims to improve Structural Health Monitoring (SHM) for transport infrastructure through the development of an innovative monitoring and management system for bridges based on a novel, inexpensive, skin-like sensor. The integrated SENSKIN technology will be implemented in the case of steel and concrete bridges, and tested, field-evaluated and benchmarked on actual bridge environment against a conventional health monitoring solution developed by Mistras Group Hellas. The main objective of the present work is to implement the autonomous, fully functional strain monitoring system based on commercially available off-the-shelf components, that will be used to accomplish direct comparison between the performance of the innovative SENSKIN sensors and the conventional strain sensors commonly used for structural monitoring of bridges. For this purpose, the mini Structural Monitoring System (mini SMS) of Physical Acoustics Corporation, a comprehensive data acquisition unit designed specifically for long-term unattended operation in outdoor environments, was selected. For the completion of the conventional system, appropriate foil-type strain sensors were selected, driven by special conditioners manufactured by Mistras Group. A comprehensive description of the strain monitoring system and its peripheral components is provided in this paper. For the evaluation of the integrated system's performance and the effect of various parameters on the long-term behavior of sensors, several test steel pieces instrumented with different strain sensors configurations were prepared and tested in both laboratory and field ambient conditions. Furthermore, loading tests were performed aiming to validate the response of the system in monitoring the strains developed in steel beam elements subject to bending regimes. Representative results obtained from the above experimental tests have been included in this paper as well.}, language = {en} } @article{WengLuedekeZempetal.2018, author = {Weng, Wei and L{\"u}deke, Matthias K. B. and Zemp, Delphine Clara and Lakes, Tobia and Kropp, J{\"u}rgen}, title = {Aerial and surface rivers}, series = {Hydrology and earth system sciences : HESS}, volume = {22}, journal = {Hydrology and earth system sciences : HESS}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-22-911-2018}, pages = {911 -- 927}, year = {2018}, abstract = {The abundant evapotranspiration provided by the Amazon forests is an important component of the hydrological cycle, both regionally and globally. Since the last century, deforestation and expanding agricultural activities have been changing the ecosystem and its provision of moisture to the atmosphere. However, it remains uncertain how the ongoing land use change will influence rainfall, runoff, and water availability as findings from previous studies differ. Using moisture tracking experiments based on observational data, we provide a spatially detailed analysis recognizing potential teleconnection between source and sink regions of atmospheric moisture. We apply land use scenarios in upwind moisture sources and quantify the corresponding rainfall and runoff changes in downwind moisture sinks. We find spatially varying responses of water regimes to land use changes, which may explain the diverse results from previous studies. Parts of the Peruvian Amazon and western Bolivia are identified as the sink areas most sensitive to land use change in the Amazon and we highlight the current water stress by Amazonian land use change on these areas in terms of the water availability. Furthermore, we also identify the influential source areas where land use change may considerably reduce a given target sink's water reception (from our example of the Ucayali River basin outlet, rainfall by 5-12 \% and runoff by 19-50 \% according to scenarios). Sensitive sinks and influential sources are therefore suggested as hotspots for achieving sustainable land-water management.}, language = {en} } @article{PrahlBoettleCostaetal.2018, author = {Prahl, Boris F. and Boettle, Markus and Costa, Lu{\´i}s F{\´i}l{\´i}pe Carvalho da and Kropp, J{\"u}rgen and Rybski, Diego}, title = {Damage and protection cost curves for coastal floods within the 600 largest European cities}, series = {Scientific Data}, volume = {5}, journal = {Scientific Data}, publisher = {Nature Publ. Group}, address = {London}, issn = {2052-4463}, doi = {10.1038/sdata.2018.34}, pages = {18}, year = {2018}, abstract = {The economic assessment of the impacts of storm surges and sea-level rise in coastal cities requires high-level information on the damage and protection costs associated with varying flood heights. We provide a systematically and consistently calculated dataset of macroscale damage and protection cost curves for the 600 largest European coastal cities opening the perspective for a wide range of applications. Offering the first comprehensive dataset to include the costs of dike protection, we provide the underpinning information to run comparative assessments of costs and benefits of coastal adaptation. Aggregate cost curves for coastal flooding at the city-level are commonly regarded as by-products of impact assessments and are generally not published as a standalone dataset. Hence, our work also aims at initiating a more critical discussion on the availability and derivation of cost curves.}, language = {en} } @article{HoferichterLaetschLazaridesetal.2018, author = {Hoferichter, Frances and Laetsch, Alexander and Lazarides, Rebecca and Raufelder, Diana}, title = {The big-fish-little-pond effect on the four facets of academic self-concept}, series = {Frontiers in psychology}, volume = {9}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2018.01247}, pages = {11}, year = {2018}, abstract = {The social context plays a decisive role in the formation of the academic self-concept (ASC) and has been widely studied as the big-fish-little-pond-effect (BFLPE). This effect describes that comparable talented students in high-achieving school settings have a lower ASC compared to equally talented students attending low-achieving settings. Past research has focused on students' domain-specific ASC, while little is known about the relation of achievement-related classroom compositions and the various facets of ASC. Additionally, BFLPE-research has been critiqued to build its theoretical frame on social comparison theory, without providing sufficient empirical support. To address this gap, we analyzed how the single student's social, criterial, absolute, and individual ASC relate to class-level achievement of 8th graders. Applying Multilevel Structural Equation Modeling (MLSEM) we found that all facets of ASC were significantly related to average-class achievement, while student's social ASC revealed the strongest associated. The results reveal explicitly that average-class achievement is strongly related to social comparison processes.}, language = {en} } @article{HoangMertensWessigetal.2018, author = {Hoang, Hoa T. and Mertens, Monique and Wessig, Pablo and Sellrie, Frank and Schenk, J{\"o}rg A. and Kumke, Michael Uwe}, title = {Antibody Binding at the Liposome-Water Interface}, series = {ACS Omega}, volume = {3}, journal = {ACS Omega}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {2470-1343}, doi = {10.1021/acsomega.8b03016}, pages = {18109 -- 18116}, year = {2018}, abstract = {Different signal amplification strategies to improve the detection sensitivity of immunoassays have been applied which utilize enzymatic reactions, nanomaterials, or liposomes. The latter are very attractive materials for signal amplification because liposomes can be loaded with a large amount of signaling molecules, leading to a high sensitivity. In addition, liposomes can be used as a cell-like "bioscaffold" to directly test recognition schemes aiming at cell-related processes. This study demonstrates an easy and fast approach to link the novel hydrophobic optical probe based on [1,3]dioxolo[4,5-f]-[1,3]benzodioxole (DBD dye mm239) with tunable optical properties to hydrophilic recognition elements (e.g., antibodies) using liposomes for signal amplification and as carrier of the hydrophobic dye. The fluorescence properties of mm239 (e.g., long fluorescence lifetime, large Stokes shift, high photostability, and high quantum yield), its high hydrophobicity for efficient anchoring in liposomes, and a maleimide bioreactive group were applied in a unique combination to build a concept for the coupling of antibodies or other protein markers to liposomes (coupling to membranes can be envisaged). The concept further allowed us to avoid multiple dye labeling of the antibody. Here, anti-TAMRA-antibody (DC7-Ab) was attached to the liposomes. In proof-of-concept, steady-state as well as time-resolved fluorescence measurements (e.g., fluorescence depolarization) in combination with single molecule detection (fluorescence correlation spectroscopy, FCS) were used to analyze the binding interaction between DC7-Ab and liposomes as well as the binding of the antigen rhodamine 6G (R6G) to the antibody. Here, the Forster resonance energy transfer (FRET) between mm239 and R6G was monitored. In addition to ensemble FRET data, single-molecule FRET (PIE-FRET) experiments using pulsed interleaved excitation were used to characterize in detail the binding on a single-molecule level to avoid averaging out effects.}, language = {en} } @article{KasyanenkoUnksovBakulevetal.2018, author = {Kasyanenko, Nina and Unksov, Ivan and Bakulev, Vladimir and Santer, Svetlana}, title = {DNA interaction with head-to-tail associates of cationic surfactants prevents formation of compact particles}, series = {Molecules}, volume = {23}, journal = {Molecules}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules23071576}, pages = {14}, year = {2018}, abstract = {Cationic azobenzene-containing surfactants are capable of condensing DNA in solution with formation of nanosized particles that can be employed in gene delivery. The ratio of surfactant/DNA concentration and solution ionic strength determines the result of DNA-surfactant interaction: Complexes with a micelle-like surfactant associates on DNA, which induces DNA shrinkage, DNA precipitation or DNA condensation with the emergence of nanosized particles. UV and fluorescence spectroscopy, low gradient viscometry and flow birefringence methods were employed to investigate DNA-surfactant and surfactant-surfactant interaction at different NaCl concentrations, [NaCl]. It was observed that [NaCl] (or the Debye screening radius) determines the surfactant-surfactant interaction in solutions without DNA. Monomers, micelles and non-micellar associates of azobenzene-containing surfactants with head-to-tail orientation of molecules were distinguished due to the features of their absorption spectra. The novel data enabled us to conclude that exactly the type of associates (together with the concentration of components) determines the result of DNA-surfactant interaction. Predomination of head-to-tail associates at 0.01 M < [NaCl] < 0.5 M induces DNA aggregation and in some cases DNA precipitation. High NaCl concentration (higher than 0.8 M) prevents electrostatic attraction of surfactants to DNA phosphates for complex formation. DAPI dye luminescence in solutions with DNA-surfactant complexes shows that surfactant tails overlap the DNA minor groove. The addition of di- and trivalent metal ions before and after the surfactant binding to DNA indicate that the bound surfactant molecules are located on DNA in islets.}, language = {en} } @article{ReichelRheinHofmannetal.2018, author = {Reichel, Martin and Rhein, Cosima and Hofmann, Lena M. and Monti, Juliana and Japtok, Lukasz and Langgartner, Dominik and F{\"u}chsl, Andrea M. and Kleuser, Burkhard and Gulbins, Erich and Hellerbrand, Claus and Reber, Stefan O. and Kornhuber, Johannes}, title = {Chronic Psychosocial Stress in Mice Is Associated With Increased Acid Sphingomyelinase Activity in Liver and Serum and With Hepatic C16:0-Ceramide Accumulation}, series = {Frontiers in Psychiatry}, volume = {9}, journal = {Frontiers in Psychiatry}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-0640}, doi = {10.3389/fpsyt.2018.00496}, pages = {8}, year = {2018}, abstract = {Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28\% (P = 0.006) and secretory Asm activity by 47\% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40\% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-alpha (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders.}, language = {en} } @article{FarhanRudolphNoecheletal.2018, author = {Farhan, Muhammad and Rudolph, Tobias and N{\"o}chel, Ulrich and Kratz, Karl and Lendlein, Andreas}, title = {Extractable Free Polymer Chains Enhance Actuation Performance of Crystallizable Poly(epsilon-caprolactone) Networks and Enable Self-Healing}, series = {Polymers}, volume = {10}, journal = {Polymers}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym10030255}, pages = {15}, year = {2018}, abstract = {Crosslinking of thermoplastics is a versatile method to create crystallizable polymer networks, which are of high interest for shape-memory actuators. Here, crosslinked poly(epsilon-caprolactone) thermosets (cPCLs) were prepared from linear starting material, whereby the amount of extractable polymer was varied. Fractions of 5-60 wt \% of non-crosslinked polymer chains, which freely interpenetrate the crosslinked network, were achieved leading to differences in the resulting phase of the bulk material. This can be described as "sponge-like" with open or closed compartments depending on the amount of interpenetrating polymer. The crosslinking density and the average network chain length remained in a similar range for all network structures, while the theoretical accessible volume for reptation of the free polymer content is affected. This feature could influence or introduce new functions into the material created by thermomechanical treatment. The effect of interpenetrating PCL in cPCLs on the reversible actuation was analyzed by cyclic, uniaxial tensile tests. Here, high reversible strains of up to Delta epsilon = 24\% showed the enhanced actuation performance of networks with a non-crosslinked PCL content of 30 wt \% resulting from the crystal formation in the phase of the non-crosslinked PCL and co-crystallization with network structures. Additional functionalities are reprogrammability and self-healing capabilities for networks with high contents of extractable polymer enabling reusability and providing durable actuator materials.}, language = {en} } @article{WillnerLevermannZhaoetal.2018, author = {Willner, Sven N. and Levermann, Anders and Zhao, Fang and Frieler, Katja}, title = {Adaptation required to preserve future high-end river flood risk at present levels}, series = {Science Advances}, volume = {4}, journal = {Science Advances}, number = {1}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aao1914}, pages = {8}, year = {2018}, abstract = {Earth's surface temperature will continue to rise for another 20 to 30 years even with the strongest carbon emission reduction currently considered. The associated changes in rainfall patterns can result in an increased flood risk worldwide. We compute the required increase in flood protection to keep high-end fluvial flood risk at present levels. The analysis is carried out worldwide for subnational administrative units. Most of the United States, Central Europe, and Northeast and West Africa, as well as large parts of India and Indonesia, require the strongest adaptation effort. More than half of the United States needs to at least double their protection within the next two decades. Thus, the need for adaptation to increased river flood is a global problem affecting industrialized regions as much as developing countries.}, language = {en} } @article{ChaykovskaHeunischvonEinemetal.2018, author = {Chaykovska, Lyubov and Heunisch, Fabian and von Einem, Gina and Hocher, Carl-Friedrich and Tsuprykov, Oleg and Pavkovic, Mira and Sandner, Peter and Kretschmer, Axel and Chu, Chang and Elitok, Saban and Stasch, Johannes-Peter and Hocher, Berthold}, title = {Urinary cGMP predicts major adverse renal events in patients with mild renal impairment and/or diabetes mellitus before exposure to contrast medium}, series = {PLoS one}, volume = {13}, journal = {PLoS one}, number = {4}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0195828}, pages = {13}, year = {2018}, abstract = {Background The use of iodine-based contrast agents entails the risk of contrast induced nephropathy (CIN). Radiocontrast agents elicit the third most common cause of nephropathy among hospitalized patients, accounting for 11-12\% of cases. CIN is connected with clinically significant consequences, including increased morbidity, prolonged hospitalization, increased risk of complications, potential need for dialysis, and increased mortality rate. The number of in hospital examinations using iodine-based contrast media has been significantly increasing over the last decade. In order to protect patients from possible complications of such examinations, new biomarkers are needed that are able to predict a risk of contrast-induced nephropathy. Urinary and plasma cyclic guanosine monophosphate (cGMP) concentrations are influenced by renal function. Urinary cGMP is primarily of renal cellular origin. Therefore, we assessed if urinary cGMP concentration may predict major adverse renal events (MARE) after contrast media exposure during coronary angiography. Methods Urine samples were prospectively collected from non-randomized consecutive patients with either diabetes or preexisting impaired kidney function receiving intra-arterial contrast medium (CM) for emergent or elective coronary angiography at the Charite Campus Mitte, University Hospital Berlin. Urinary cGMP concentration in spot urine was analyzed 24 hours after CM exposure. Patients were followed up over 90 days for occurrence of death, initiation of dialysis, doubling of plasma creatinine concentration or MARE. Results In total, 289 consecutive patients were included into the study. Urine cGMP/creatinine ratio 24 hours before CM exposure expressed as mean +/- SD was predictive for the need of dialysis (no dialysis: 89.77 +/- 92.85 mu M/mM, n = 277; need for dialysis: 140.3 +/- 82.90 mu M/mM, n = 12, p = 0.008), death (no death during follow-up: 90.60 +/- 92.50 mu M/mM, n = 280; death during follow-up: 169.88 +/- 81.52 mu M/mM, n = 9; p = 0.002), and the composite endpoint MARE (no MARE: 86.02 +/- 93.17 mu M/mM, n = 271; MARE: 146.64 +/- 74.68 mu M/mM, n = 18, p<0.001) during the follow-up of 90 days after contrast media application. cGMP/creatinine ratio stayed significantly increased at values exceeding 120 pM/mM in patients who developed MARE, required dialysis or died. Conclusions Urinary cGMP/creatinine ratio >= 120 mu M/mM before CM exposure is a promising biomarker for the need of dialysis and all-cause mortality 90 days after CM exposure in patients with preexisting renal impairment or diabetes.}, language = {en} }