@article{KretschmerCohenMatthiasetal.2018, author = {Kretschmer, Marlene and Cohen, Judah and Matthias, Vivien and Runge, Jakob and Coumou, Dim}, title = {The different stratospheric influence on cold-extremes in Eurasia and North America}, series = {npj Climate and Atmospheric Science}, volume = {1}, journal = {npj Climate and Atmospheric Science}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-3722}, doi = {10.1038/s41612-018-0054-4}, pages = {10}, year = {2018}, abstract = {The stratospheric polar vortex can influence the tropospheric circulation and thereby winter weather in the mid-latitudes. Weak vortex states, often associated with sudden stratospheric warmings (SSW), have been shown to increase the risk of cold-spells especially over Eurasia, but its role for North American winters is less clear. Using cluster analysis, we show that there are two dominant patterns of increased polar cap heights in the lower stratosphere. Both patterns represent a weak polar vortex but they are associated with different wave mechanisms and different regional tropospheric impacts. The first pattern is zonally symmetric and associated with absorbed upward-propagating wave activity, leading to a negative phase of the North Atlantic Oscillation (NAO) and cold-air outbreaks over northern Eurasia. This coupling mechanism is well-documented in the literature and is consistent with the downward migration of the northern annular mode (NAM). The second pattern is zonally asymmetric and linked to downward reflected planetary waves over Canada followed by a negative phase of the Western Pacific Oscillation (WPO) and cold-spells in Central Canada and the Great Lakes region. Causal effect network (CEN) analyses confirm the atmospheric pathways associated with this asymmetric pattern. Moreover, our findings suggest the reflective mechanism to be sensitive to the exact region of upward wave-activity fluxes and to be state-dependent on the strength of the vortex. Identifying the causal pathways that operate on weekly to monthly timescales can pave the way for improved sub-seasonal to seasonal forecasting of cold spells in the mid-latitudes.}, language = {en} } @article{OmidbakhshfardFujikuraOlasetal.2018, author = {Omidbakhshfard, Mohammad Amin and Fujikura, Ushio and Olas, Justyna Jadwiga and Xue, Gang-Ping and Balazadeh, Salma and Mueller-Roeber, Bernd}, title = {GROWTH-REGULATING FACTOR 9 negatively regulates arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia}, series = {PLoS Genetics : a peer-reviewed, open-access journal}, volume = {14}, journal = {PLoS Genetics : a peer-reviewed, open-access journal}, number = {7}, publisher = {PLoS}, address = {San Fransisco}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1007484}, pages = {31}, year = {2018}, abstract = {Leaf growth is a complex process that involves the action of diverse transcription factors (TFs) and their downstream gene regulatory networks. In this study, we focus on the functional characterization of the Arabidopsis thaliana TF GROWTH-REGULATING FACTOR9 (GRF9) and demonstrate that it exerts its negative effect on leaf growth by activating expression of the bZIP TF OBP3-RESPONSIVE GENE 3 (ORG3). While grf9 knockout mutants produce bigger incipient leaf primordia at the shoot apex, rosette leaves and petals than the wild type, the sizes of those organs are reduced in plants overexpressing GRF9 (GRF9ox). Cell measurements demonstrate that changes in leaf size result from alterations in cell numbers rather than cell sizes. Kinematic analysis and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay revealed that GRF9 restricts cell proliferation in the early developing leaf. Performing in vitro binding site selection, we identified the 6-base motif 5'-CTGACA-3' as the core binding site of GRF9. By global transcriptome profiling, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) we identified ORG3 as a direct downstream, and positively regulated target of GRF9. Genetic analysis of grf9 org3 and GRF9ox org3 double mutants reveals that both transcription factors act in a regulatory cascade to control the final leaf dimensions by restricting cell number in the developing leaf.}, language = {en} } @article{KubinGuoKrolletal.2018, author = {Kubin, Markus and Guo, Meiyuan and Kroll, Thomas and Loechel, Heike and Kallman, Erik and Baker, Michael L. and Mitzner, Rolf and Gul, Sheraz and Kern, Jan and F{\"o}hlisch, Alexander and Erko, Alexei and Bergmann, Uwe and Yachandra, Vittal and Yano, Junko and Lundberg, Marcus and Wernet, Philippe}, title = {Probing the oxidation state of transition metal complexes}, series = {Chemical science}, volume = {9}, journal = {Chemical science}, number = {33}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2041-6520}, doi = {10.1039/c8sc00550h}, pages = {6813 -- 6829}, year = {2018}, abstract = {Transition metals in inorganic systems and metalloproteins can occur in different oxidation states, which makes them ideal redox-active catalysts. To gain a mechanistic understanding of the catalytic reactions, knowledge of the oxidation state of the active metals, ideally in operando, is therefore critical. L-edge X-ray absorption spectroscopy (XAS) is a powerful technique that is frequently used to infer the oxidation state via a distinct blue shift of L-edge absorption energies with increasing oxidation state. A unified description accounting for quantum-chemical notions whereupon oxidation does not occur locally on the metal but on the whole molecule and the basic understanding that L-edge XAS probes the electronic structure locally at the metal has been missing to date. Here we quantify how charge and spin densities change at the metal and throughout the molecule for both redox and core-excitation processes. We explain the origin of the L-edge XAS shift between the high-spin complexes Mn-II(acac)(2) and Mn-III(acac)(3) as representative model systems and use ab initio theory to uncouple effects of oxidation-state changes from geometric effects. The shift reflects an increased electron affinity of Mn-III in the core-excited states compared to the ground state due to a contraction of the Mn 3d shell upon core-excitation with accompanied changes in the classical Coulomb interactions. This new picture quantifies how the metal-centered core hole probes changes in formal oxidation state and encloses and substantiates earlier explanations. The approach is broadly applicable to mechanistic studies of redox-catalytic reactions in molecular systems where charge and spin localization/delocalization determine reaction pathways.}, language = {en} } @article{TanLiuSiemensmeyeretal.2018, author = {Tan, Li and Liu, Bing and Siemensmeyer, Konrad and Glebe, Ulrich and B{\"o}ker, Alexander}, title = {Synthesis of Polystyrene-Coated Superparamagnetic and Ferromagnetic Cobalt Nanoparticles}, series = {Polymers}, volume = {10}, journal = {Polymers}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym10101053}, pages = {18}, year = {2018}, abstract = {Polystyrene-coated cobalt nanoparticles (NPs) were synthesized through a dual-stage thermolysis of cobalt carbonyl (Co-2(CO)(8)). The amine end-functionalized polystyrene surfactants with varying molecular weight were prepared via atom-transfer radical polymerization technique. By changing the concentration of these polymeric surfactants, Co NPs with different size, size distribution, and magnetic properties were obtained. Transmission electron microscopy characterization showed that the size of Co NPs stabilized with lower molecular weight polystyrene surfactants (M-n = 2300 g/mol) varied from 12-22 nm, while the size of Co NPs coated with polystyrene of middle (M-n = 4500 g/mol) and higher molecular weight (M-n = 10,500 g/mol) showed little change around 20 nm. Magnetic measurements revealed that the small cobalt particles were superparamagnetic, while larger particles were ferromagnetic and self-assembled into 1-D chain structures. Thermogravimetric analysis revealed that the grafting density of polystyrene with lower molecular weight is high. To the best of our knowledge, this is the first study to obtain both superparamagnetic and ferromagnetic Co NPs by changing the molecular weight and concentration of polystyrene through the dual-stage decomposition method.}, language = {en} } @article{OttenKnoxBouldayetal.2018, author = {Otten, Cecile and Knox, Jessica and Boulday, Gwenola and Eymery, Mathias and Haniszewski, Marta and Neuenschwander, Martin and Radetzki, Silke and Vogt, Ingo and Haehn, Kristina and De Luca, Coralie and Cardoso, Cecile and Hamad, Sabri and Igual Gil, Carla and Roy, Peter and Albiges-Rizo, Corinne and Faurobert, Eva and von Kries, Jens P. and Campillos, Monica and Tournier-Lasserve, Elisabeth and Derry, William Brent and Abdelilah-Seyfried, Salim}, title = {Systematic pharmacological screens uncover novel pathways involved in cerebral cavernous malformations}, series = {EMBO molecular medicine}, volume = {10}, journal = {EMBO molecular medicine}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {1757-4676}, doi = {10.15252/emmm.201809155}, pages = {17}, year = {2018}, abstract = {Cerebral cavernous malformations (CCMs) are vascular lesions in the central nervous system causing strokes and seizures which currently can only be treated through neurosurgery. The disease arises through changes in the regulatory networks of endothelial cells that must be comprehensively understood to develop alternative, non-invasive pharmacological therapies. Here, we present the results of several unbiased small-molecule suppression screens in which we applied a total of 5,268 unique substances to CCM mutant worm, zebrafish, mouse, or human endothelial cells. We used a systems biology-based target prediction tool to integrate the results with the whole-transcriptome profile of zebrafish CCM2 mutants, revealing signaling pathways relevant to the disease and potential targets for small-molecule-based therapies. We found indirubin-3-monoxime to alleviate the lesion burden in murine preclinical models of CCM2 and CCM3 and suppress the loss-of-CCM phenotypes in human endothelial cells. Our multi-organism-based approach reveals new components of the CCM regulatory network and foreshadows novel small-molecule-based therapeutic applications for suppressing this devastating disease in patients.}, language = {en} } @article{HlawenkaSiemensmeyerWeschkeetal.2018, author = {Hlawenka, Peter and Siemensmeyer, Konrad and Weschke, Eugen and Varykhalov, Andrei and Sanchez-Barriga, Jaime and Shitsevalova, Natalya Y. and Dukhnenko, A. V. and Filipov, V. B. and Gabani, Slavomir and Flachbart, Karol and Rader, Oliver and Rienks, Emile D. L.}, title = {Samarium hexaboride is a trivial surface conductor}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-02908-7}, pages = {7}, year = {2018}, abstract = {SmB6 is predicted to be the first member of the intersection of topological insulators and Kondo insulators, strongly correlated materials in which the Fermi level lies in the gap of a many-body resonance that forms by hybridization between localized and itinerant states. While robust, surface-only conductivity at low temperature and the observation of surface states at the expected high symmetry points appear to confirm this prediction, we find both surface states at the (100) surface to be topologically trivial. We find the (Gamma) over bar state to appear Rashba split and explain the prominent (X) over bar state by a surface shift of the many-body resonance. We propose that the latter mechanism, which applies to several crystal terminations, can explain the unusual surface conductivity. While additional, as yet unobserved topological surface states cannot be excluded, our results show that a firm connection between the two material classes is still outstanding.}, language = {en} } @article{HochreinMitchellSchulzetal.2018, author = {Hochrein, Lena and Mitchell, Leslie A. and Schulz, Karina and Messerschmidt, Katrin and M{\"u}ller-R{\"o}ber, Bernd}, title = {L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-017-02208-6}, pages = {10}, year = {2018}, abstract = {The synthetic yeast genome constructed by the International Synthetic Yeast Sc2.0 consortium adds thousands of loxPsym recombination sites to all 16 redesigned chromosomes, allowing the shuffling of Sc2.0 chromosome parts by the Cre-loxP recombination system thereby enabling genome evolution experiments. Here, we present L-SCRaMbLE, a lightcontrolled Cre recombinase for use in the yeast Saccharomyces cerevisiae. L-SCRaMbLE allows tight regulation of recombinase activity with up to 179-fold induction upon exposure to red light. The extent of recombination depends on induction time and concentration of the chromophore phycocyanobilin (PCB), which can be easily adjusted. The tool presented here provides improved recombination control over the previously reported estradiol-dependent SCRaMbLE induction system, mediating a larger variety of possible recombination events in SCRaMbLE-ing a reporter plasmid. Thereby, L-SCRaMbLE boosts the potential for further customization and provides a facile application for use in the S. cerevisiae genome reengineering project Sc2.0 or in other recombination-based systems.}, language = {en} } @article{KruegerSchwarzeBaumannetal.2018, author = {Kr{\"u}ger, Stefanie and Schwarze, Michael and Baumann, Otto and G{\"u}nter, Christina and Bruns, Michael and K{\"u}bel, Christian and Szabo, Dorothee Vinga and Meinusch, Rafael and Bermudez, Veronica de Zea and Taubert, Andreas}, title = {Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting}, series = {Beilstein journal of nanotechnology}, volume = {9}, journal = {Beilstein journal of nanotechnology}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt, Main}, issn = {2190-4286}, doi = {10.3762/bjnano.9.21}, pages = {187 -- 204}, year = {2018}, abstract = {The synthesis, structure, and photocatalytic water splitting performance of two new titania (TiO2)/gold(Au)/Bombyx mori silk hybrid materials are reported. All materials are monoliths with diameters of up to ca. 4.5 cm. The materials are macroscopically homogeneous and porous with surface areas between 170 and 210 m(2)/g. The diameter of the TiO2 nanoparticles (NPs) - mainly anatase with a minor fraction of brookite - and the Au NPs are on the order of 5 and 7-18 nm, respectively. Addition of poly(ethylene oxide) to the reaction mixture enables pore size tuning, thus providing access to different materials with different photocatalytic activities. Water splitting experiments using a sunlight simulator and a Xe lamp show that the new hybrid materials are effective water splitting catalysts and produce up to 30 mmol of hydrogen per 24 h. Overall the article demonstrates that the combination of a renewable and robust scaffold such as B. mori silk with a photoactive material provides a promising approach to new monolithic photocatalysts that can easily be recycled and show great potential for application in lightweight devices for green fuel production.}, language = {en} } @article{SchneiderGuenterTaubert2018, author = {Schneider, Matthias and G{\"u}nter, Christina and Taubert, Andreas}, title = {Co-deposition of a hydrogel/calcium phosphate hybrid layer on 3D printed poly(lactic acid) scaffolds via dip coating}, series = {Polymers}, volume = {10}, journal = {Polymers}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym10030275}, pages = {19}, year = {2018}, abstract = {The article describes the surface modification of 3D printed poly(lactic acid) (PLA) scaffolds with calcium phosphate (CP)/gelatin and CP/chitosan hybrid coating layers. The presence of gelatin or chitosan significantly enhances CP co-deposition and adhesion of the mineral layer on the PLA scaffolds. The hydrogel/CP coating layers are fairly thick and the mineral is a mixture of brushite, octacalcium phosphate, and hydroxyapatite. Mineral formation is uniform throughout the printed architectures and all steps (printing, hydrogel deposition, and mineralization) are in principle amenable to automatization. Overall, the process reported here therefore has a high application potential for the controlled synthesis of biomimetic coatings on polymeric biomaterials.}, language = {en} } @article{ReeseWinkelmannGudmundsson2018, author = {Reese, Ronja and Winkelmann, Ricarda and Gudmundsson, Gudmundur Hilmar}, title = {Grounding-line flux formula applied as a flux condition in numerical simulations fails for buttressed Antarctic ice streams}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {12}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {10}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-12-3229-2018}, pages = {3229 -- 3242}, year = {2018}, abstract = {Currently, several large-scale ice-flow models impose a condition on ice flux across grounding lines using an analytically motivated parameterisation of grounding-line flux. It has been suggested that employing this analytical expression alleviates the need for highly resolved computational domains around grounding lines of marine ice sheets. While the analytical flux formula is expected to be accurate in an unbuttressed flow-line setting, its validity has hitherto not been assessed for complex and realistic geometries such as those of the Antarctic Ice Sheet. Here the accuracy of this analytical flux formula is tested against an optimised ice flow model that uses a highly resolved computational mesh around the Antarctic grounding lines. We find that when applied to the Antarctic Ice Sheet the analytical expression provides inaccurate estimates of ice fluxes for almost all grounding lines. Furthermore, in many instances direct application of the analytical formula gives rise to unphysical complex-valued ice fluxes. We conclude that grounding lines of the Antarctic Ice Sheet are, in general, too highly buttressed for the analytical parameterisation to be of practical value for the calculation of grounding-line fluxes.}, language = {en} }